Refine search
Results 1-10 of 75
The association of liver function biomarkers with internal exposure of short- and medium-chain chlorinated paraffins in residents from Jinan, China
2021
Liu, Yi | Han, Xiumei | Zhao, Nan | Fang, Xinxin | Zhang, Shiwen | Li, Shixue | Jiang, Wei | Ding, Lei
Chlorinated paraffins (CPs) are pervasive environmental pollutants which have been reported to be hepatotoxic by laboratory cell and animal studies. However, the related epidemiological reports on their hepatotoxic effects to humans are sparse. In this study, we evaluated the associations between six liver enzymes and serum short-chain CP (SCCP) or medium-chain CP (MCCP) concentrations of 197 residents in Jinan, China. Serum S/MCCPs were detected by quadrupole time-of-flight high-resolution mass spectrometry coupled with atmospheric pressure chemical ionization source (APCI-QTOF-HRMS), and quantified by pattern deconvolution method. The associations between total serum S/MCCP concentrations (ΣS/MCCPs) and continuous liver enzyme levels were assessed by linear regression. Odds ratios (ORs) for the effects of serum ΣS/MCCPs concentrations on liver function biomarkers dichotomized by clinical reference intervals were predicted by logistic regression, either treating ΣS/MCCPs as continuous or categorical dependents. After multivariable adjustment, linear regression results illustrated that 1-ln unit increase in serum ΣSCCPs was negatively associated with male PA levels [-6.08, 95% confidence interval (CI): −11.90, −3.25, p < 0.05], positively associated with male TB levels (1.80, 95% CI: 0.28, 3.31, p < 0.05), and positively associated with female AST levels (1.39, 95% CI: 0.07, 2.70, p < 0.05). One-ln unit increase in serum ΣMCCPs was negatively associated male PA levels (−7.56, 95% CI: −17.15, −4.03, p < 0.05). Logistic regression results suggested that male serum ΣSCCPs were associated with increased prevalence of abnormal PA (OR = 1.47 per 1 ln-unit increase, CI = 1.18, 1.82) and TB (OR = 1.75, 95% CI = 1.12, 2.76) levels, and male serum ΣMCCPs were significantly associated with increased prevalence of abnormal PA (OR = 1.43, 95% CI = 1.03, 1.97) levels. In addition, male participants with concentrations above the median ΣS/MCCPs were associated with increased risk for abnormal PA levels [SCCPs, 2.11-fold (95% CI = 1.15, 3.87); MCCPs, 1.94-fold (95% CI = 1.24, 3.03)]. Male participants with concentrations above the median ΣSCCPs were also associated with increased risk for abnormal TB levels (OR = 1.75, 95% CI = 1.12, 2.76). Conclusively, our results revealed that CP internal exposure was associated with disturbed liver biomarker levels, suggesting the hepatotoxicity of both SCCPs and MCCPs to humans.
Show more [+] Less [-]Field performance of the radon-deficit technique to detect and delineate a complex DNAPL accumulation in a multi-layer soil profile
2021
Barrio-Parra, F. | Izquierdo-Díaz, M. | Díaz-Curiel, J. | De Miguel, E.
The performance of the radon (²²²Rn)-deficit technique has been evaluated at a site in which a complex DNAPL mixture (mostly hexachlorocyclohexanes and chlorobenzenes) has contaminated all four layers (from top to bottom: anthropic backfill, silt, gravel and marl) of the soil profile. Soil gas samples were collected at two depths (0.8 m and 1.7 m) in seven field campaigns and a total of 186 ²²²Rn measurements were performed with a pulse ionization detector. A statistical assessment of the influence of field parameters on the results revealed that sampling depth and atmospheric pressure did not significantly affect the measurements, while the location of the sampling point and ground-level atmospheric temperature did. In order to remove the bias introduced by varying field temperatures and hence to be able to jointly interpret ²²²Rn measurements from different campaigns, ²²²Rn concentrations were rescaled by dividing each individual datum by the mean ²²²Rn concentration of its corresponding field campaign. Rescaled ²²²Rn maps showed a high spatial correlation between ²²²Rn minima and maximum contaminant concentrations in the top two layers of the soil profile, successfully delineating the surface trace of DNAPL accumulation in the anthropic backfill and silt layers. However, no correlation could be established between ²²²Rn concentrations in superficial soil gas and contaminant concentration in the deeper two layers of the soil profile. These results indicate that the ²²²Rn-deficit technique is unable to describe the vertical variation of contamination processes with depth but can be an effective tool for the preliminary characterization of sites in which the distance between the inlet point of the sampling probe and the contaminant accumulation falls within the effective diffusion length of ²²²Rn in the affected soil profile.
Show more [+] Less [-]Species and release characteristics of VOCs in furniture coating process
2019
Qi, Yiqing | Shen, Liming | Zhang, Jilei | Yao, Jia | Lu, Rong | Miyakoshi, Tetsuo
Volatile organic compounds (VOCs) are an important factor affecting ambient air quality, and furniture production is one of the important sources of VOC pollution. High VOC concentrations have adverse effects on the environment and worker welfare in furniture factories. In order to control VOC emissions in a furniture workshop, the VOC species and concentration distributions were examined. Qualitative analysis of VOC species was carried out by headspace gas chromatography/mass spectrometry. The results showed that VOCs from a furniture workshop were mainly 12 substances including acetate, toluene, and xylene compounds. The heights and representative positions of VOCs released during the coating process were determined, and the results showed that VOC concentrations depended on environmental and height factors. The concentration of VOCs decreased with increasing altitude and reached a maximum concentration at 0.4 m above the ground. Because the concentration of VOCs varied with temperature, humidity, air pressure, and amount of spray paint, this paper established functional relationships between VOC concentrations and temperature, humidity, air pressure, and amount of spray paint. These results provide a theoretical basis for furniture workshops to automatically monitor and control VOCs.VOCs from the furniture workshop were mainly composed of 10 substances including acetate, toluene, and xylene compounds.
Show more [+] Less [-]Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft
2018
Turgut, Enis T. | Usanmaz, Oznur | Rosen, Marc A.
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NOx and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NOx. For a five-tonne aircraft mass increase, the average change in emissions indices are found to be −4.1% and −5.7% (CO), −5.4% and −8.2% (HC), and +1.1% and +1.6% (NOx) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NOx during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7–8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NOx).
Show more [+] Less [-]Urban air pollution and meteorological factors affect emergency department visits of elderly patients with chronic obstructive pulmonary disease in Taiwan
2017
Ding, Pei-Hsiou | Wang, Gen-Shuh | Guo, Yue-Leon | Chang, Shuenn-Chin | Wan, Gwo-Hwa
Both air pollution and meteorological factors in metropolitan areas increased emergency department (ED) visits from people with chronic obstructive pulmonary disease (COPD). Few studies investigated the associations between air pollution, meteorological factors, and COPD-related health disorders in Asian countries. This study aimed to investigate the relationship between the environmental factors and COPD-associated ED visits of susceptible elderly population in the largest Taiwanese metropolitan area (Taipei area, including Taipei city and New Taipei city) between 2000 and 2013. Data of air pollutant concentrations (PM10, PM2.5, O3, SO2, NO2 and CO), meteorological factors (daily temperature, relative humidity and air pressure), and daily COPD-associated ED visits were collected from Taiwan Environmental Protection Administration air monitoring stations, Central Weather Bureau stations, and the Taiwan National Health Insurance database in Taipei area. We used a case-crossover study design and conditional logistic regression models with odds ratios (ORs), and 95% confidence intervals (CIs) for evaluating the associations between the environmental factors and COPD-associated ED visits. Analyses showed that PM2.5, O3, and SO2 had significantly greater lag effects (the lag was 4 days for PM2.5, and 5 days for O3 and SO2) on COPD-associated ED visits of the elderly population (65–79 years old). In warmer days, a significantly greater effect on elderly COPD-associated ED visits was estimated for PM2.5 with coexistence of O3. Additionally, either O3 or SO2 combined with other air pollutants increased the risk of elderly COPD-associated ED visits in the days of high relative humidity and air pressure difference, respectively. This study showed that joint effect of urban air pollution and meteorological factors contributed to the COPD-associated ED visits of the susceptible elderly population in the largest metropolitan area in Taiwan. Government authorities should review existing air pollution policies, and strengthen health education propaganda to ensure the health of the susceptible elderly population.
Show more [+] Less [-]The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine
2012
We studied the effect of estimated PM₁₀ on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries.
Show more [+] Less [-]Assessment of PM2.5-bound nitrogen-containing organic compounds (NOCs) during winter at urban sites in China and Korea
2020
Jang, Kyoung-Soon | Choi, Mira | Park, Minhan | Park, Moon Hee | Kim, Young Hwan | Seo, Jungju | Wang, Yujue | Hu, Min | Bae, Min-Suk | Park, Kihong
In this study, ambient fine particles (PM₂.₅) were collected in two urban cities in China and Korea (Beijing and Gwangju, respectively) simultaneously in January 2018. Analysis of the nonpolar and semipolar organic matter (OM) using atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that compounds containing only C, H, and O (CHO) and those containing C, H, O, and N (CHON) accounted for more than 90% of the total intensity of the OM peaks. Higher proportions of CHON compounds were observed during days with abnormally high PM₂.₅ concentrations at both sites than on regular or non-event days. The proportion of CHON species at the Beijing site was not correlated with secondary ionic species (i.e., NO₃⁻, SO₄²⁻, and NH₄⁺) or gaseous components (i.e., O₃, NO₂, and SO₂). In contrast, the proportion of CHON species at the Gwangju site was positively correlated with the concentrations of particulate nitrate and ammonium ions, assuming that ambient ammonium nitrate plays a role in the atmospheric formation of nitrogen-containing organic compounds (NOCs) at the Gwangju site and that Gwangju is more strongly influenced by secondary aerosols than Beijing is. In particular, a significant proportion of the compounds observed at the Beijing site contained only C, H and N (CHN), while negligible amounts of CHN were detected at the Gwangju site. The CHN species in Beijing were identified as quinoline compounds and the corresponding –CH₂ homologous series using complementary GC × GC-TOF MS analysis. These results suggest that NOCs and their –CH₂ homologous series from primary emissions may be significant contributors to nonpolar and semipolar OM during winter in Beijing, while NOCs with high oxidation states, likely formed via ambient-phase nitrate-mediated reactions, may be the dominant OM constituents in Gwangju.
Show more [+] Less [-]Identification of 7–9 ring polycyclic aromatic hydrocarbons in coals and petrol coke using High performance liquid chromatography – Diode array detection coupled to Atmospheric pressure laser ionization – Mass spectrometry (HPLC-DAD-APLI-MS)
2019
Thiäner, Jan B. | Nett, Linus | Zhou, Shangbo | Preibisch, Yves | Hollert, Henner | Achten, Christine
Polycyclic aromatic hydrocarbons containing at least 24 carbon atoms (≥C₂₄-PAH) are often associated with pyrogenic processes such as combustion of fuel, wood or coal, and occur in the environment in diesel particulate matter, black carbon and coal tar. Some of the ≥C₂₄-PAH, particularly the group of dibenzopyrenes (five isomers, six aromatic rings) are known to show high mutagenic and carcinogenic activita.Gas chromatography – mass spectrometry is a well-established method for the analysis of lower molecular weight PAH but is not optimally suited for the analysis of ≥C₂₄-PAH due to their low vapor pressures. Also, hundreds of ≥C₂₄-PAH isomers are possible but only a few compounds are commercially available as reference standards. Therefore, in this study, a combination of multidimensional liquid chromatography, UV–Vis diode array detection, PAH selective and highly sensitive atmospheric pressure laser ionization – mass spectrometry is used to detect and unequivocally identify PAH. For identification of PAH in two bituminous coals and one petrol coke sample, unique and compound specific UV–Vis spectra were acquired. It was possible to identify ten compounds (naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[e,ghi]perylene, dibenzo[cd,lm]perylene, benzo[a]coronene, phenanthrol[5,4,3,2-abcde]perylene, benzo[ghi]naphtho[8,1,2-bcd]perylene, benzo[pqr]naphtho[8,1,2-bcd]perylene, naphtho[8,1,2-abc]coronene and tribenzo[e,ghi,k]perylene) by comparison of acquired spectra with spectra from literature. Additionally, it was possible to detect similar distribution patterns in different samples and signals related to alkylated naphthopyrenes, naphthofluoranthenes or dibenzopyrenes. Subsequent effect-directed analysis of a bituminous coal sample using the microEROD (ethoxyresorufin-O-deethylase) bioassay showed high suitability and revealed lower EROD induction for the ≥C₂₄-PAH (TEQ range 0.67–10.07 ng/g) than for the allover < C₂₄-PAH containing fraction (TEQ 84.00 ng/g). Nevertheless, the toxicity of ≥C₂₄-PAH has a significant impact compared with <C₂₄-PAH and must be considered for risk assessment. The LC-DAD-APLI-MS method, presented in this study, is a powerful tool for the unequivocal identification of these ≥ C₂₄-PAH.
Show more [+] Less [-]Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic activities with several nuclear receptors
2017
Peng, Hui | Sun, Jianxian | Saunders, David M.V. | Codling, Garry | Wiseman, Steve | Jones, Paul D. | Giesy, John P.
In the current study, by combining ultra-high resolution (UHR) MS1 spectra, MS2 spectra, and derivatization, three hydroxylated isomers of 2-ethylhexyl tetrabromobenzoate (OH-TBB) were identified in Firemaster® 550 and BZ-54 technical products. Also, a new LC-UHRMS method, using atmospheric pressure chemical ionization (APCI), was developed for simultaneous analysis of OH-TBB, TBB, hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) and TBPH in 23 samples of dust collected from houses in Saskatoon, SK, Canada. OH-TBBs were detected in 91% of samples, with a geometric mean concentration of 0.21 ng/g, which was slightly less than those of OH-TBPH (0.35 ng/g). TBB was detected in 100% of samples of dust with a geometric mean concentration of 992 ng/g. Significant (p < 0.001) log-linear relationships between concentrations of OH-TBBs, TBB, or OH-TBPHs and TBPH in dust support the hypothesis of a common source of these compounds. OH-TBBs were found to be strong agonists of peroxisome proliferator-activated receptor gamma (PPARγ) and weaker agonists of the estrogen receptor (ER), but no agonistic activity was observed with the androgen receptor (AR). Occurrence of OH-TBBs in technical products and house dust, together with their relatively strong PPARγ activities, indicated their potential risk to health of humans.
Show more [+] Less [-]Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown
2021
Fu, Shuang | Guo, Meixiu | Fan, Linping | Deng, Qiyin | Han, Deming | Wei, Ye | Luo, Jinmin | Qin, Guimei | Cheng Jinping,
With the implementation of COVID-19 restrictions and consequent improvement in air quality due to the nationwide lockdown, ozone (O₃) pollution was generally amplified in China. However, the O₃ levels throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To better understand this unusual phenomenon, we investigated the characteristics of conventional pollutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear regression (MLR) model, and the impact of local sources and long-range transport based on a continuous emission monitoring system (CEMS) and the HYSPLIT model. Results show that in Guangxi, the conventional pollutants generally declined during the COVID-19 lockdown period (January 24 to February 9, 2020) compared with their concentrations during 2016–2019, while O₃ gradually increased during the resumption (10 February to April 2020) and full operation periods (May and June 2020). Focusing on Beihai, a typical Guangxi region city, the correlations between the daily O₃ concentrations and six meteorological parameters (wind speed, visibility, temperature, humidity, precipitation, and atmospheric pressure) and their corresponding regression coefficients indicate that meteorological conditions were generally conducive to O₃ pollution mitigation during the lockdown. A 7.84 μg/m³ drop in O₃ concentration was driven by meteorology, with other decreases (4.11 μg/m³) explained by reduced anthropogenic emissions of O₃ precursors. Taken together, the lower NO₂/SO₂ ratios (1.25–2.33) and consistencies between real-time monitored primary emissions and ambient concentrations suggest that, with the closure of small-scale industries, residual industrial emissions have become dominant contributors to local primary pollutants. Backward trajectory cluster analyses show that the slump of O₃ concentrations in Southern Guangxi could be partly attributed to clean air mass transfer (24–58%) from the South China Sea. Overall, the synergistic effects of the COVID-19 lockdown and meteorological factors intensified O₃ reduction in the Guangxi region of South China.
Show more [+] Less [-]