Refine search
Results 1-6 of 6
Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests
2022
Wakil, Waqas | Kavallieratos, Nickolas G. | Ghazanfar, Muhammad Usman | ʻUs̲mān, Muḥammad
In the current study we have tested the application of Beauveria bassiana (Hypocreales: Cordycipitaceae) alone and in combination with fipronil at two doses against Tribolium castaneum (Coleoptera: Tenebrionidae), Rhyzopertha dominica (Coleoptera: Bostrychidae), Sitophilus granarius (Coleoptera: Curculionidae), and Trogoderma granarium (Coleoptera: Dermestidae) under laboratory and field conditions. At laboratory conditions, the combination of B. bassiana with the highest dose of fipronil produced the highest mortality. At different temperatures, mortality was increased with the increase in temperature. Maximum mortality was observed at 30 °C, followed by 25 °C and 20 °C for all tested species. Different treatments significantly reduced the progeny number in comparison to control groups for all tested species at all temperatures. In the persistence trial, all treatments that included the combinations of B. bassiana with fipronil produced significantly higher mortalities than the single treatments for all tested species over a period of 6 months. Furthermore, all treatments significantly reduced the number of progenies of all insect species in comparison with the control groups over the same storage period. In field trials, mortalities of all tested insect species were significantly higher on wheat treated with B. bassiana, fipronil, or their combinations than on controls for an entire storage period of 180 days. Overall, R. dominica was found the most susceptible species followed by S. granarius, T. castaneum, and T. granarium. The findings of the current study suggest that the use of B. bassiana and fipronil as grain protectants may provide elevated control against major stored-grain insect species during a prolonged period of storage.
Show more [+] Less [-]Persistence and efficacy of enhanced diatomaceous earth, imidacloprid, and Beauveria bassiana against three coleopteran and one psocid stored-grain insects
2021
Wakil, Waqas | Schmitt, Thomas | Kavallieratos, Nickolas G.
The residual efficacy of the enhanced diatomaceous earth (DE) formulation DEBBM alone and in combination with Beauveria bassiana (Hypocreales: Cordycipitaceae) or with the neonicotinoid insecticide imidacloprid against Tribolium castaneum (Coleoptera: Tenebrionidae), Rhyzopertha dominica (Coleoptera: Bostrychidae), Cryptolestes ferrugineus (Coleoptera: Laemophloeidae), and Liposcelis paeta (Psocoptera: Liposcelididae) was investigated in the laboratory. The combination treatments were more effective compared to the single treatments against all examined species. The combinations of DEBBM and imidacloprid and imidacloprid with the highest dose rate of B. bassiana provided the highest mortality values against all tested species for 90 days of storage period. The combination of DEBBM plus B. bassiana resulted to the highest mortalities and to the lowest offspring production of all combinations tested after 180 days of storage. Mortality of adults for each test insect species was decreased over the storage period of 6 months, and the progeny production was increased with the extended storage period. Among the tested insect species, L. paeta was the most susceptible to all three grain protectants followed by C. ferrugineus, R. domina, and T. castaneum. The findings of the current study suggest that the use of DEBBM, imidacloprid, and B. bassiana as grain protectants may provide elevated control of major stored-grain insect species during a prolonged period of storage.
Show more [+] Less [-]Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II)
2018
Gola, Deepak | Malik, Anushree | Namburath, Maneesh | Ahammad, Shaikh Ziauddin
Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88–97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h⁻¹ (control) to 0.031 h⁻¹, showing 28% reduction in biomass at 30 mg L⁻¹ Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L⁻¹ initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.
Show more [+] Less [-]Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil
2016
Suksabye, Parinda | Pimthong, Apinya | Dhurakit, Prapai | Mekvichitsaeng, Phenjun | Thiravetyan, Paitip
Cadmium (Cd) contaminated in rice grains is a serious problem because most Asians consume rice on a daily basis. Rice grown in Cd-contaminated soil normally did not have high concentration of Cd. However, soil samples used in this study had high concentrations of Cd. The purpose of this study was to clearly see the effects of biochar and microorganism addition in rice growing in Cd-contaminated soil. The initial Cd concentration in Cd-contaminated soil used in this study was about 650 mg kg⁻¹. Cadmium concentration in rice plants grown in Cd-contaminated soil with the addition of 1 % (w/w) different biochars such as sawdust fly ash (SDFA), bagasse fly ash (BGFA), and rice husk ash (RHA) was investigated. The results showed that SDFA was the best biochar in terms of reducing cadmium accumulation in rice grains when compared to BGFA and RHA under the same conditions. In addition, rice plants grown in Cd-contaminated soil with the addition of various nonpathogenic microorganisms, such as Pseudomonas aeruginosa, Bacillus subtilis, and Beauveria bassiana were also studied. The results showed that the addition of 2 % (v/v) microorganisms can reduce Cd accumulation in grains. It was found that grains obtained from Cd-contaminated soil with the addition of P. aeruginosa had the lowest cadmium concentration compared to the ones from soil amended with other strains. This was due to the fact that P. aeruginosa adsorbed more Cd itself into its cells than other strains. The rice plants grown in Cd-contaminated soil with the addition of biochars and microorganisms were also compared. The results showed that adding 2 % (v/v) microorganisms seemed to reduce Cd accumulation in rice grains better than adding 1 % (w/w) biochars. In addition, the amounts of calcium and magnesium in rice grains and the dry weight of plant in Cd-contaminated soil amended with P. aeruginosa were the highest in comparison to other microorganisms, biochars, and the soil without any amendments (Cd-soil control). It might be possible that microorganisms can cause leaching of Ca, Mg, etc. from contaminated soil and compete with Cd to be uptaken by plants. This would cause the increase in plant dry weight and higher mineral nutrients accumulation in grains. Both biochars and microorganisms are suitable for reducing the amount of Cd in rice grains. The application should depend on farmers, biochars available in nearby areas, etc. Therefore, microorganisms and biochars can be used to solve the problem of cadmium contamination in rice grains.
Show more [+] Less [-]Application of Beauveria bassiana spore waste as adsorbent to uptake acid red 97 dye from aqueous medium
2019
Georgin, Jordana | Alves, Eliana | Drumm, Fernanda | Tonato, Denise | Grassi, Patrícia | Piccin, Jeferson S. | Oliveira, Marcos L. S. | Dotto, Guilherme L. | Mazutti, Marcio A.
The adsorption of acid red 97 dye (RED 97) by the waste of the filamentous fungus Beauveria bassiana was analyzed. The adsorbent was obtained as a waste of a fermentative process, and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR), X–ray powder diffractometry (XRD), and specific surface area (BET). After the characterization, adsorption tests were carried out to determine the ideal conditions of pH, adsorbent mass, and contact time for the process. Adsorption isotherms, thermodynamic studies, and the treatment of textile effluent were also investigated. The adsorbent characterization allowed the visualization of its amorphous structure, with irregular and heterogeneous particles. The pore diameter was 51.9 nm and the surface area was 0.247 m² g⁻¹. 1.2 g L⁻¹ of the adsorbent and pH of 2.0 were the ideal conditions for RED 97 adsorption. The pseudo–second–order kinetic model was the most appropriate to represent the experimental data, being the equilibrium reached in about 110 min. The Langmuir model was the most suitable to represent the equilibrium data, with maximum adsorption capacity of 194.1 mg g⁻¹ at 45 °C. The adsorption processes was thermodynamically spontaneous, favorable, and exothermic. In the treatment of a real textile effluent, 5 g L⁻¹ of the spores was capable to decolorize 70% of the solution. Therefore, spore wastes of Beauveria bassiana were promising for RED 97 adsorption.
Show more [+] Less [-]Evaluation of the performances of a biological treatment on tin-enriched bronze
2017
Albini, Monica | Chiavari, Cristina | Bernardi, Elena | Martini, Carla | Mathys, Lidia | Joseph, Edith
Recently, research gives emphasis to eco-friendly and sustainable approaches for the preservation of cultural heritage that could offer advantages in terms of compatibility, durability and safety. Hence, a biological treatment, based on a specific fungal strain of Beauveria bassiana, is exploited for the stabilization of soluble and/or active bronze corrosion products, converting them into copper oxalates. The chemical stability of the latter represents a real improvement for the long-term preservation of bronze, especially in case of exposure to acid rain. However, the corrosion behaviour of bronze differs from that of pure copper due to the presence of additional alloying elements. In natural environments, the selective dissolution of copper leads to a relative tin-enrichment within the corrosion layers, mostly in unsheltered areas exposed to rainwater runoff. To understand the influence of tin-enrichment on the formation of oxalates, pure tin and artificially tin-enriched bronze coupons were treated with this novel biological system and, in the case of bronze coupons, exposed to accelerated ageing. Tin enrichment and accelerated ageing were performed through runoff tests. Before and after treatment and ageing, the sample surface was characterized through Fourier transform infrared (FTIR) and Raman spectroscopies, scanning electron microscopy coupled to energy dispersive spectroscopy (SEM-EDS). Metals released in the ageing solutions were analysed through atomic absorption spectrometry (AAS). The analytical results allowed to better understand the response of unsheltered areas from outdoor bronze monuments to the biological treatment proposed.
Show more [+] Less [-]