Refine search
Results 41-50 of 1,871
Leaching of PBDEs from microplastics under simulated gut conditions: Chemical diffusion and bioaccumulation Full text
2022
Sun, Bingbing | Zeng, E. Y. (Eddy Y.)
Considerable efforts on exposure assessment of microplastics (MPs) as an agent in transport of toxic contaminants have been performed in organisms. However, chemical diffusion of inherent hydrophobic organic contaminants from MPs under simulated gut conditions is poorly examined. The present study examined the transfer kinetics of polybrominated diphenyl ethers (PBDEs) from polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP) MPs under gut surfactants (sodium taurocholate) at two relevant body temperatures of marine organisms, and evaluated the importance of MP ingestion in bioaccumulation of PBDEs in lugworm by a biodynamic model. Diffusion coefficients of PBDEs range from 5.82 × 10⁻²³ to 7.96 × 10⁻²⁰ m² s⁻¹ in PS, 5.49 × 10⁻²³ to 3.45 × 10⁻²⁰ m² s⁻¹ in ABS, and 5.58 × 10⁻²¹ to 5.79 × 10⁻¹⁷ m² s⁻¹ in PP, with apparent activation energies in the range of 33–148 kJ mol⁻¹. The biota–plastic accumulation factors of PBDEs leached from these plastics range from 1.44 × 10⁻⁸ to 7.15 × 10⁻⁵. Although ingestion of MPs with the common size (>0.5 mm) showed the negligible contribution to bioaccumulation of PBDEs in lugworm, their contribution in PBDEs transfer can be increased with gradual breakdown of MPs.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations Full text
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-18-CE34-0013,APPROve,Démarche intégrée pour proposer la protéomique dans la surveillance : accumulation, devenir et multimarqueurs(2018)
International audience | One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109 Cd-or 65 Znradiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109 Cd or 65 Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7 th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
Show more [+] Less [-]Toxicokinetics and toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp Full text
2022
Zhu, Xiaopeng | Teng, Jia | Xu, Elvis Genbo | Zhao, Jianmin | Shan, Encui | Sun, Chaofan | Wang, Qing
Nanoplastic is recognized as an emerging environmental pollutant due to the anticipated ubiquitous distribution, increasing concentration in the ocean, and potential adverse health effects. While our understanding of the ecological impacts of nanoplastics is still limited, we benefit from relatively rich toxicological studies on other nanoparticles such as nano metal oxides. However, the similarity and difference in the toxicokinetic and toxicodynamic aspects of plastic and metallic nanoparticles remain largely unknown. In this study, juvenile Pacific white shrimp Litopenaeus vannamei was exposed to two types of nanoparticles at environmentally relative low and high concentrations, i.e., 100 nm polystyrene nanoplastics (nano-PS) and titanium dioxide nanoparticles (nano-TiO₂) via dietary exposure for 28 days. The systematic toxicological evaluation aimed to quantitatively compare the accumulation, excretion, and toxic effects of nano-PS and nano-TiO₂. Our results demonstrated that both nanoparticles were ingested by L. vannamei with lower egestion of nano-TiO₂ than nano-PS. Both nanoparticles inhibited the growth of shrimps, damaged tissue structures of the intestine and hepatopancreas, disrupted expression of immune-related genes, and induced intestinal microbiota dysbiosis. Nano-PS exposure caused proliferative cells in the intestinal tissue, and the disturbance to the intestinal microbes was also more serious than that of nano-TiO₂. The results indicated that the effect of nano-PS on the intestinal tissue of L. vannamei was more severe than that of nano-TiO₂ with the same particle size. The study provides new theoretical basis of the similarity and differences of their toxicity, and highlights the current lack of knowledge on various aspects of absorption, distribution, metabolism, and excretion (ADME) pathways of nanoplastics.
Show more [+] Less [-]Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults Full text
2022
Kou, Jing | Li, Xiang | Zhang, Mingye | Wang, Limei | Hu, Liqin | Liu, Xinyu | Mei, Surong | Xu, Guowang
China has been in a rapid development period in recent decades, the mass production and use of chemical industrial products and pesticides have resulted in a large amount of pollutants in the environment. These pollutants enter the human body through environmental exposure and dietary intake, causing adverse health effects. Although many of them have been banned and restricted in the production and use in China, these pollutants still remain in the human body due to their high persistence and strong bioaccumulation. In this review, we aim to reveal the accumulation levels and profiles, as well as the temporal and spatial distribution of common chemical pollutants including chlorinated paraffins (CPs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, organophosphorus flame retardants (OPFRs), new halogenated flame retardants (NHFRs), polychlorinated biphenyls, phthalic acid esters, perfluorinated compounds, bisphenols, organophosphorus pesticides and pyrethroid insecticides in the blood (including whole blood, serum and plasma) of Chinese adults by extracting 93 related studies published from 1990 to 2021. Results have shown that CPs, OCPs and PAHs were the main pollutants in China, the levels of short-chain chlorinated paraffin, p,p'-DDE and phenanthrene in blood even reached 11,060.58, 740.41 and 498.28 ng/g lipid respectively. Under the strict control of pollutants in China, the levels of most pollutants have been on a downward trend except for perfluoro octanoate and perfluoro nonanoate. Besides, OPFRs, NHFRs and PAHs may have a potential upward trend, requiring further research and observation. As for spatial distribution, East China (Bohai Bay and Yangtze River Delta) and South China (Pearl River Delta) were the major polluted regions due to their fast development of industry and agriculture.
Show more [+] Less [-]The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus Full text
2022
Morgado, Rui G. | Pereira, Andreia | Cardoso, Diogo N. | Prodana, Marija | Malheiro, Catarina | Silva, Ana Rita R. | Vinhas, André | Soares, Amadeu M.V.M. | Loureiro, Susana
Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.
Show more [+] Less [-]Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea: Distribution and human health risk implications Full text
2022
Cara, Byns | Lies, Teunen | Thimo, Groffen | Robin, Lasters | Lieven, Bervoets
Per- and polyfluorinated alkyl substances (PFAS) are highly persistent chemicals, which pose a potential risk for aquatic wildlife due to their bioaccumulative behaviour and toxicological effects. Although the distribution of PFAS in marine environments has been studied worldwide, little is known on the contamination of PFAS in the southern North Sea. In the present study, the bioaccumulation and trophic transfer of Perfluoroalkyl acids (PFAAs) was studied in liver and muscle tissue of seven fish species and in whole-body tissue of two crustacean species, collected at 10 sites in the Belgian North Sea. Furthermore, the human and ecological health risks were examined. Overall, perfluorooctane sulfonate (PFOS) was predominant in all matrices and other long-chain PFAS were frequently detected. Mean PFOS concentrations ranged from <LOQ to 107 ng/g (ww) in fish liver, from <LOQ to 24 ng/g ww in fish muscle and from 0.29 to 5.6 ng/g ww in crustaceans. Elevated perfluorotridecanoic acid (PFTrDA) concentrations were detected in fish liver from the estuarine and coastal region (<LOQ-116 ng/g ww), indicating a specific point source of this compound. Based on stable isotope analysis, no distinctive trophic transfer patterns of PFAS could be identified which implies that the bioconcentration of PFAS from the surrounding abiotic environment is most likely dominating over the biomagnification in the studied biota. The consumption of commercially important species such as the brown shrimp (Crangon crangon), plaice (Pleuronecta platessa), sole (Solea solea) and whiting (Merlangus merlangus) might pose potential health risks if it exceeds 17 g/day, 18 g/day, 26 g/day and 43 g/day respectively. Most PFOS measurements did not exceed the QSbᵢₒₜₐ,ₕₕ of 9.1 ng/g ww, however, the benchmark of 33 ng/g ww targeting the protection of wildlife from secondary poisoning was exceeded for 43% and 28% of the samples in plaice and sole.
Show more [+] Less [-]Insights into the effects of salinity on the sorption and desorption of legacy and emerging per-and polyfluoroalkyl substances (PFASs) on marine sediments Full text
2022
Yin, Chao | Pan, Chang-Gui | Xiao, Shao-Ke | Wu, Qi | Tan, Hong-Ming | Yu, Kefu
Per-and polyfluoroalkyl substances (PFASs) have attracted extensive attention since this century due to their wide distribution, persistence, bioaccumulation/biomagnification potential, and (eco)toxicity. In the present study, we investigated the sorption kinetics, sorption isotherms and desorption behaviors of legacy and emerging PFASs with different chain lengths and functional end groups onto marine sediments at four different salinities (0, 10, 20, and 30 practical salinity units (psu)). Results revealed that the sorption of PFASs onto sediment can be well described by the pseudo-second-order kinetic model. PFASs sorption was influenced by both compound-specific and solution-specific parameters. The distribution coefficient (Kd) for PFASs were increased with the increase of perfluorocarbon chain length and salinity, suggesting that hydrophobic and electrostatic interactions were involved in the adsorption process. 6:2 FTSA showed the lowest adsorption among PFASs with eight carbon atoms (6:2 FTSA, PFOA and PFOS). The increase of perfluorocarbon chain length of PFASs and salinity would result in the decrease of desorption rate of PFASs from sediment. In addition, PFCAs were desorbed more easily from the sediment than the PFSAs with the same perfluorocarbon chain length at all salinity groups. The present study demonstrated that salinity can apparently influence the fate of PFASs in aquatic environment and provided valuable data for modeling the fate of PFASs in real environment.
Show more [+] Less [-]Natural colloids at environmentally relevant concentrations affect the absorption and removal of benzophenone-3 in zebrafish Full text
2022
Sun, Yu | Lü, Guanghua | Zhang, Peng | Wang, Ying | Ling, Xin | Xue, Qi | Yan, Zhenhua | Liu, Jianchao
Aquatic natural colloids are closely related to the environmental behavior of pollutants, which may affect their bioavailability in aquatic organisms. This study explored the potential mechanisms of the natural colloids at environmentally relevant concentrations affecting the bioaccumulation process of benzophenone-3 (BP3) in zebrafish (Danio rerio). The results of kinetic model fitting showed that the natural colloids decreased the uptake and loss rate of BP3 by zebrafish but prolonged the time to reach the cumulative equilibrium, eventually resulting in a higher cumulative concentration in zebrafish. According to the tissue concentration at equilibrium and the results of toxicokinetic analysis, the presence of high molecular colloids could enhance the bioaccumulation of freely dissolved BP3 due to its high desorption rate with BP3 in the intestines of fish, increasing the freely dissolved BP3 concentrations to which zebrafish were exposed. Both natural colloids and BP3 could enhance the cell permeability of zebrafish, which allowed colloid-bound BP3 to directly enter the fish and accumulate in its muscle. Besides, although both natural colloids and BP3 could cause the metabolic disorders in adult zebrafish, they affected the physiological and biochemical activities of zebrafish through different pathways. The disturbance of glutathione metabolism in zebrafish induced by natural colloids may be the reason for the diminished ability of zebrafish to clear and transform BP3 in the mixture system. The carrier effect of natural colloids and reduced clearance ability of zebrafish eventually increased the bioaccumulation of BP3 in zebrafish. This study highlights the significance of natural colloids at environmentally relevant concentrations on the biological effects of emerging contaminants in actual waters, however, natural colloids are always ignored in most field investigation of pollutants, which would ultimately lead to an underestimation of the true ecological risk of pollutants.
Show more [+] Less [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake Full text
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Show more [+] Less [-]The significance of trophic transfer in the uptake of microplastics by carnivorous gastropod Reishia clavigera Full text
2022
Xu, Xiaoyu | Fang, James Kar-Hei | Wong, Chun-Yuen | Cheung, Siu-Gin
The present study compared the relative significance of prey consumption and respiration as routes of microplastic (MP) intake in a carnivorous muricid gastropod, Reishia clavigera. The time-dependent accumulation of MPs within 14-day exposure and their removal through depuration were also investigated for two forms of MPs (fibre, fragment) at an environmentally relevant concentration (10 items L⁻¹) and two higher concentrations (100 and 1000 items L⁻¹). At 1000 items L⁻¹, the number of MPs in R. clavigera on Day 14 was 1.8 ± 0.2 fibres individual⁻¹ or 0.8 ± 0.3 fragments individual⁻¹, equivalent to 64.6% of the fibres or 9.4% of the fragments retained by the variable mussel Brachidontes variabilis, a prey of R. clavigera. Consumption of B. variabilis was the most important route of MP intake in R. clavigera, although a small number of MPs were adhered to the gills during ventilation. Depuration in clean seawater without MPs was very effective in eliminating MPs in the body of R. clavigera but the possibility of long-term bioaccumulation of MPs could not be ruled out. The high percentage of MPs transferred from the prey to predator indicates the potential of trophic transfer as a significant route of uptake for MPs in higher predators.
Show more [+] Less [-]