Refine search
Results 1-10 of 14
Dynamics of trace metals in organisms and ecosystems: Prediction of metal bioconcentration in different organisms and estimation of exposure risks Full text
2007
Fränzle, S. | Markert, B. | Wünschmann, S.
Metal ions interact with biological materials and their decomposition products by ligation (coordination complex-formation with certain moieties containing O, N, S, etc.). The extent of this interaction depends on the identities of both ligand and metal ion and can be described by some equation derived from perturbation theory. Uptake of metal ions - including highly toxic ones - from soils is controlled by a competition between root exudate components and soil organic matter (SOM) for the ions. SOM consists of a variety of potential ligands which evolve during humification towards more efficient binding (retention) of metals such as Cu, Ni, Cr but also of toxicants like U, Cd. The actual way of interaction can be inferred from stoichiometry of the involved compounds and the C/N ratio in the soil, providing predictions as to which metals will be most efficiently shuttled into green plants or fungi, respectively. The latter, selective process is crucial for closing nutrient cycles and sensitively depends on C/N ratio and the extent of “forcing” by onfalling leaf or needle litter. Therefore, analytical data on the soil can be used to predict possible risks of exposition to toxic metals also for human consumption of plant parts. Degradation, amounts and evolution of N-free vs. nitrogenous SOM control transfer of essential and toxic metals from soil into plants, to be estimated from coordination (bio-)chemistry.
Show more [+] Less [-]Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens Full text
2007
Geiser, L.H. | Neitlich, P.N.
Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l-1, lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO2 levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements. Lichen-based air quality and climate gradients in western Oregon and Washington are responsive to regionally increasing nitrogen availability and to temperature changes predicted by climate models.
Show more [+] Less [-]The leachability, bioaccessibility, and speciation of Cu in the sediment of channel catfish ponds Full text
2007
Liu, R. | Zhao, D.
There have been growing concerns about the environmental impact of Cu applied in the catfish pond aquaculture. In this paper, sediments taken from three commercial catfish ponds were studied for content, leachability, bioaccessibility, and speciation of sediment-bound Cu. Results showed that the Cu was concentrated in the top 10 cm of the sediments and the peak Cu concentrations ranged from the background level to about 200 mg/kg. Toxicity characteristic leaching procedure showed only 1-8% of sediment Cu was leachable while bioaccessible Cu, evaluated by physiological based extraction test, accounted for up to 40-85% of total Cu. Due to the high redox potential in the surface sediments, acid-volatile sulfide was not a significant binding phase. The sequential extraction results showed that the residual phase (forms in lattices of primary and secondary minerals) was the major Cu fraction in the first two pond sediments but carbonate-bound, Fe/Mn oxide-bound and organically bound Cu, as well as the residual fraction, seemed equally important in the third pond. Careful disposal of the Cu-laden pond sediment is necessary.
Show more [+] Less [-]Microbial interactions with organic contaminants in soil: Definitions, processes and measurement Full text
2007
Semple, K.T. | Doick, K.J. | Wick, L.Y. | Harms, H.
There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. Understanding organic contaminant's behaviour in soil is key to chemically predicting biodegradation.
Show more [+] Less [-]Contaminant exposure in terrestrial vertebrates Full text
2007
Smith, P.N. | Cobb, G.P. | Godard-Codding, C. | Hoff, D. | McMurry, S.T. | Rainwater, T.R. | Reynolds, K.D.
Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates.
Show more [+] Less [-]Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils Full text
2007
Fang, Joong | Wen, B. | Shan, X.Q. | Lin, J.M. | Owens, G.
Previously recommended rhizosphere-based method (RHIZO) applied to moist rhizosphere soils was integrated with moist bulk soils, and termed adjusted-RHIZO method (A-RHIZO). The A-RHIZO and RHIZO methods were systematically compared with EDTA, DTPA, CaCl2 and the first step of the Community Bureau of Reference (BCR1) methods for assessing metal phytoavailability under field conditions. Results suggested that moist bulk soils are equally suited or even better than rhizosphere soils to estimate metal phytoavailability. The A-RHIZO method was preferred to other methods for predicting the phytoavailability of Ni, Cu, Zn, Cd, Pb and Mn to wheat roots with correlation coefficients of 0.730 (P < 0.001), 0.854 (P < 0.001), 0.887 (P < 0.001), 0.739 (P < 0.001), 0.725 (P < 0.001) and 0.469 (P < 0.05), respectively. When including soil properties, other extraction methods were also able to predict phytoavailability reasonably well for some metals. Soil pH, organic matter and Fe-Mn oxide contents, and cation-exchange capacity mostly influenced the extraction and phytoavailability of metals. An adjusted-RHIZO method was the most promising approach for predicting metal phytoavailability to wheat under field conditions.
Show more [+] Less [-]Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress Full text
2007
Jiang, H.M. | Yang, J.C. | Zhang, J.F.
Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis, it was found that the ultrastructure of chloroplasts were changed, the shape of the chloroplasts altered and the numbers of grana that were asymmetrical increased; the numbers of grana and thylakoids decreased under the stress of Cd and Zn. The results indicated that the complex pollution involving Cd and Zn resulted in the membrane system of chloroplasts being damaged. When external phosphorus was applied, the numbers of damaged chloroplasts were significantly reduced and the nucleoli were better formed than those that did not receive phosphorus treatment. Moreover, many phosphate deposits were found in the vacuoles and on the surface of the roots, which were formed by phosphorus complexing with Cd (Ksp = 2.53 x 10-33) and Zn (Ksp = 9.00 x 10-33), respectively. Treatment with phosphorus conduced an increased chlorophyll content in plants compared with those that did not receive external phosphorus. External P could decrease the bioavailability of Cd and Zn.
Show more [+] Less [-]Use of Spinach, Radish, and Perennial Ryegrass to Assess the Availability of Metals in Waste Foundry Sands Full text
2007
Dungan, Robert S. | Dees, Nikki H.
Plant uptake is a major pathway by which toxic metals can enter the food chain. In this laboratory study we grew spinach, radish, and perennial ryegrass on sand blends containing 50% waste foundry sand (WFS) to assess the availability of Al, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, V, and Zn. The WFSs utilized in this study were from aluminum, iron, and steel foundries. Although there were differences in the amounts of metals accumulated by the various plant species, excessive amounts of heavy metals were not taken up, regardless of WFS treatment. In spinach and radish, B, Cu, Fe, Mn and Zn were found to be within or close to the sufficiency range for agronomic crops. In ryegrass cuttings at 27, 57, and 87 days, Cu and Zn were within sufficiency ranges, but plants were Fe deficient and contained elevated concentrations of B, Mn, and Mo. Data from this study will be useful for state regulatory agencies interested in developing beneficial use regulations for WFSs.
Show more [+] Less [-]Seasonal Denitrification Potential in Wetland Sediments with Organic Matter from Different Plant Species Full text
2007
Bastviken, S Kallner | Eriksson, P. G. | Ekström, A. | Tonderski, K.
Vegetation both physically and biochemically influences denitrification in wetlands. Litter from various plant species supplies various amounts and qualities of organic carbon to denitrifying bacteria, and may thus affect denitrification capacity. We explore whether there is seasonal variation in the denitrification potential in stands of Glyceria maxima, Phragmites australis, Typha latifolia, and Potamogeton pectinatus (the stands differed in terms of which species was predominant). Experiments and measurements investigated whether denitrification potential was related to organic matter and its availability to denitrifying bacteria, suitability for bacterial growth, and amount in the wetland. Availability of organic material, as measured in the slurries, was highest in the G. maxima and P. pectinatus samples, with the highest availability in May and August. However, when the samples were closer to wetland conditions, i.e., intact sediment cores containing litter and organic sediment, the denitrifying capacity was highest in the cores from G. maxima stands, but lowest in P. pectinatus cores. In addition, the denitrification potential of the intact cores was highest in November. Differences in denitrification capacity between the slurries and intact sediment cores, considering the organic material of the plant species and the seasonal pattern, were attributed to differences in the amount of plant litter generated.
Show more [+] Less [-]Contribution of dissolved organic nitrogen deposition to nitrogen saturation in a forested mountainous watershed in Tsukui, Central Japan Full text
2007
Ham, Young-Sik | Tamiya, Sayaka | Choi, I-Song
Nitrogen (N) budget was estimated with dissolved inorganic N (DIN) and dissolved organic N (DON) in a forested mountainous watershed in Tsukui, Kanagawa Prefecture, about 50 km west of Tokyo in Central Japan. The forest vegetation in the watershed was dominant by Konara oak (Quercus serrata) and Korean hornbeam (Carpinus tschonoskii), and Japanese cedar (Cryptomeria japonica). Nitrate (NO₃ -) concentration in the watershed streamwater was averagely high (98.0 ±± 19 (±± SD, n = 36) μmol L-¹) during 2001-2003. There was no seasonal and annual changes in the stream NO- ₃ concentration even though the highest N uptake rate presumably occurred during the spring of plant growing season, a fact indicating that N availability was in excess of biotic demands. The DON deposition rates (DON input rates) in open area and forest area were estimated as one of the main N sources, accounting for about 32% of total dissolved N (TDN). It was estimated that a part of the DON input rate contributed to the excessive stream NO- ₃ output rate under the condition of the rapid mineralization and nitrification rates, which annual DON deposition rates were positively correlated with the stream NO₃ - output rates. The DON retention rate in the DON budget had a potential capacity, which contributed to the excessive stream NO- ₃ output rate without other N contributions (e.g. forest floor N or soil N).
Show more [+] Less [-]