Refine search
Results 1-10 of 208
Catalytic production of biodiesel from corn oil by metal-mixed oxides Full text
2017
Hatefi, Hajar | Mohsennia, Mohsen | Niknafs, Hadi | Golzary, Abooali
The present study investigates the transesterification of corn oil with methanol over two oxides of MgO and ZnO at 65 ͦC and 1 atm. These two catalysts have been prepared via a conventional co-precipitation process. As for MgO, the corresponding mixed metal nitrate solution has been mixed and heated at the presence of urea. ZnO has also been synthesized by co-precipitation of metal acetate at the presence of oxalic acid and ethanol. The catalysts then have been characterized by means of X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD results indicate high purity for both catalysts. Also, catalytic activity has been evaluated in methanol reflux temperature through corn oil transesterification, with the impacts of reaction variables, like catalyst amount, methanol/oil molar ratio, and reaction time on biodiesel yield, investigated by means of HNMR spectrum. Under appropriate transesterification conditions at 65 °C (catalyst amount= 5%, methanol/ oil ratio= 20, and reaction time= 10 hr), an ME content of 62.61% can be achieved, using MgO catalyst. Similarly, the experiments have been repeated to achieve the best yield, using ZnO catalyst, with the highest rate, equal to 53.1%, obtained in 9% of catalyst and methanol/oil ratio of 30 over 10 hr. Furthermore, reusability of ZnO and MgO has been evaluated in transesterification reaction.
Show more [+] Less [-]Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions Full text
2021
Numpilai, Thanapha | Cheng, Chin Kui | Seubsai, Anusorn | Faungnawakij, Kajornsak | Limtrakul, Jumras | Witoon, Thongthai
Recycling of waste glycerol derived from biodiesel production to high value-added chemicals is essential for sustainable development of Bio-Circular-Green Economy. This work studied the conversion of glycerol to 1,3-propanediol over Pt/WOₓ/Al₂O₃ catalysts, pointing out the impacts of catalyst pore sizes and operating conditions for maximizing the yield of 1,3-propanediol. The results suggested that both pore confinement effect and number of available reactive metals as well as operating conditions determined the glycerol conversion and 1,3-propanediol selectivity. The small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst (6.1 nm) gave a higher Pt dispersion (32.0%), a smaller Pt crystallite size (3.5 nm) and a higher number of acidity (0.47 mmol NH₃ g⁻¹) compared to those of the large-pore 5Pt/WOₓ/L-Al₂O₃ catalyst (40.3 nm). However, glycerol conversion and 1,3-propanediol yield over the small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst were significantly lower than those of the large-pore Pt/WOₓ/L-Al₂O₃ catalyst, suggesting that the diffusional restriction within the small-pore catalyst suppressed transportation of molecules to expose catalytic active sites, favoring the excessive hydrogenolysis of 1,3-propanediol, giving rise to undesirable products. The best 1,3-propanediol yield of 32.8% at 78% glycerol conversion were achieved over the 5Pt/WOₓ/L-Al₂O₃ under optimal reaction condition of 220 °C, 6 MPa, 5 h reaction time and amount of catalyst to glycerol ratio of 0.25 g mL⁻¹. However, the 1,3-propanediol yield and glycerol conversion decreased to 19.6% and 51% after the 4th reaction-regeneration which were attributed to the carbonaceous deposition and the agglomeration of Pt particles.
Show more [+] Less [-]Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture Full text
2021
Sales Morais, Naassom Wagner | Coelho, Milena Maciel Holanda | Silva, Amanda de Sousa e | Silva, Francisco Schiavon Souza | Ferreira, Tasso Jorge Tavares | Pereira, Erlon Lopes | dos Santos, André Bezerra
Methane (CH₄) production from anaerobic digestion of solid and liquid agro-industrial wastes is an attractive strategy to meet the growing need for renewable energy sources and promote environmentally appropriate disposal of organic wastes. This work aimed at determining the CH₄ production potential of six agro-industrial wastewaters (AWW), evaluating the most promising for methanization purposes. It also aims to provide kinetic parameters and stoichiometric coefficients of CH₄ production and define which kinetic models are most suitable for simulating the CH₄ production of the evaluated substrates. The AWW studied were swine wastewater (SW), slaughterhouse wastewater (SHW), dairy wastewater (DW), brewery wastewater (BW), fruit processing wastewater (FPW), and residual glycerol (RG) of biodiesel production. RG was the substrate that showed the highest methanization potential. Exponential kinetic models can be efficiently applied for describing CH₄ production of more soluble substrates. On the other hand, logistic models were more suitable to predict the CH₄ production of more complex substrates.
Show more [+] Less [-]In vitro evaluation of the cytotoxicity, mutagenicity and DNA damage induced by particle matter and gaseous emissions from a medium-duty diesel vehicle under real driving conditions using palm oil biodiesel blends Full text
2020
Botero, Maria L. | Mendoza, Carolina | Arias, Silvana | Hincapié, Oscar D. | Agudelo, John R. | Ortiz, Isabel C.
The influence of palm oil biodiesel content on the cytotoxicity, mutagenicity and genotoxicity of particle- and gas-phase diesel vehicle emissions was investigated. The emissions were collected on-board of a EURO IV diesel truck, fuelled with mixtures of 10% (B10), 20% (B20) and 100% (B100) of palm oil biodiesel, under real driving conditions. Organic extracts of the particulate matter (PM) and gases were characterised for 17 PAH (including EPA priority) and used for the biological assay. Increasing biodiesel content in the fuel mixture results in a decrease in the PM and PAH emission factors, both in the particulate and gas-phase. The majority of the PAH are present in the gas-phase. The mutagenic potencies, in TA98 bacteria, are higher for B20 in both phases, whereas the mutagenicity emission factor, that takes into account the lower emission of PM and PAH, is not significantly different between the fuels. Higher direct mutagenicity (TA98 + S9) is observed in all the tested fuels, indicating the action of carcinogenic compounds other than non-substituted PAH. The gas-phase extracts present higher cytotoxicity and genotoxicity in lung epithelial cell A549, which may be related to the higher PAH content in the gas-phase. The increase in biodiesel content have a different impact on cytotoxicity, being larger in the gas-phase and lower in the particle-phase. This indicates that pulmonary toxicity may be higher for the gaseous emissions, due to the role of different toxic compounds compared to the PM. The adverse biological effects when biodiesel content increases are not consequent with the reduction of the PAH characterised, indicating that other toxic compounds are more relevant. Further investigations to identify these compounds are required in order to update and focus the efforts regarding emission targets and controls.
Show more [+] Less [-]Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats Full text
2018
Douki, Thierry | Corbière, Cécile | Preterre, David | Martin, Perrine J. | Lecureur, Valérie | André, Véronique | Landkocz, Yann | Pottier, Ivannah | Keravec, Veronika | Fardel, Olivier | Moreira-Rebelo, Silvestre | Pottier, Didier | Vendeville, Cathy | Dionnet, Frédéric | Gosset, Pierre | Billet, Sylvain | Monteil, Christelle | Sichel, François
The contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine. Parameters such as the presence of a particle filter or the use of gasoil containing rapeseed methyl ester were investigated. Various biological parameters were monitored in the lungs to assess the toxic and genotoxic effects of the exposure. First, a transcriptomic analysis showed that some pathways related to DNA repair and cell cycle were affected to a limited extent by diesel but even less by biodiesel. In agreement with occurrence of a limited genotoxic stress in the lungs of diesel-exposed animals, small induction of γ-H2AX and acrolein adducts was observed but not of bulky adducts and 8-oxodGuo. Unexpected results were obtained in the study of the effect of the particle filter. Indeed, exhausts collected downstream of the particle filter led to a slightly higher induction of a series of genes than those collected upstream. This result was in agreement with the formation of acrolein adducts and γH2AX. On the contrary, induction of oxidative stress remained very limited since only SOD was found to be induced and only when rats were exposed to biodiesel exhaust collected upstream of the particle filter. Parameters related to telomeres were identical in all groups. In summary, our results point to a limited accumulation of damage in lungs following repeated exposure to diesel exhausts when modern engines and relevant fuels are used. Yet, a few significant effects are still observed, mostly after the particle filter, suggesting a remaining toxicity associated with the gaseous or nano-particular phases.
Show more [+] Less [-]The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions Full text
2013
Chai, Ming | Lu, Mingming | Liang, Fuyan | Tzillah, Aisha | Dendramis, Nancy | Watson, Libya
In this study, emissions of carbonyl compounds from the use B50 and B100 were measured with a non-road diesel generator. A total of 25 carbonyl compounds were identified in the exhaust, including 10 with laboratory-synthesized standards. Formaldehyde, acetaldehyde, and acrolein were found as the most abundant carbonyl compounds emitted for both diesel and biodiesel. The sulphur content of diesel fuels and the source of biodiesel fuels were not found to have a significant impact on the emission of carbonyl compounds. The overall maximum incremental reactivity (MIR) was the highest at 0 kW and slightly increased from 25 to 75 kW. The MIR of B100 was the highest, followed by diesel and B50, which is consistent with the emission rates of total carbonyl compounds. This suggests that the use of biodiesel blends may be more beneficial to the environment than using pure biodiesel.
Show more [+] Less [-]Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation Full text
2021
Verma, Puneet | Jafari, Mohammad | Zare, Ali | Pickering, Edmund | Guo, Yi | Osuagwu, Chiemeriwo Godday | Stevanovic, Svetlana | Brown, Richard | Ristovski, Zoran
This study investigates the morphology and nanostructure of soot particles during cold-start and hot-start engine operation of a diesel engine using oxygenated fuels. The soot samples were analysed using transmission electron microscopy. The oxygen content in the fuel was varied between 0 and 12%. The results showed that the primary particles during cold-start have significantly smaller size when compared to hot-start engine operation. The addition of oxygenated fuels also resulted in smaller sized primary particles. Smaller radius of gyration and higher fractal dimension of soot aggregates during cold-start would mean smaller aggregate size with a more compact structure. Shorter fringes with a higher inter-fringe spacing for cold-start would mean lower graphitisation of soot particles that could be related to higher oxidation reactivity of soot particles.
Show more [+] Less [-]Comparative study on gene expression profile in rat lung after repeated exposure to diesel and biodiesel exhausts upstream and downstream of a particle filter Full text
2020
Lecureur, Valérie | Monteil, Christelle | Jaguin, Marie | Cazier, Fabrice | Preterre, David | Corbière, Cécile | Gosset, Pierre | Douki, Thierry | Sichel, François | Fardel, Olivier
Biodiesel is considered as a valuable and less toxic alternative to diesel. However, cellular and molecular effects of repeated exposure to biodiesel emissions from a recent engine equipped with a diesel particle filter (DPF) remain to be characterized. To gain insights about this point, the lung transcriptional signatures were analyzed for rats (n = 6 per group) exposed to filtered air, 30% rapeseed biodiesel (B30) blend or reference diesel (RF0), upstream and downstream a DPF, for 3 weeks (3 h/day, 5 days/week).Genomic analysis revealed a modest regulation of gene expression level (lower than a 2-fold) by both fuels and a higher number of genes regulated downstream the DPF than upstream, in response to either RF0 or to B30 exhaust emissions. The presence of DPF was found to notably impact the lung gene signature of rats exposed to B30. The number of genes regulated in common by both fuels was low, which is likely due to differences in concentrations of regulated pollutants in exhausts, notably for compound organic volatiles, polycyclic aromatic hydrocarbons, NO or NOx. Nevertheless, we have identified some pathways that were activated for both exhaust emissions, such as integrin-, IGF-1- and Rac-signaling pathways, likely reflecting the effects of gas phase products. By contrast, some canonical pathways relative to “oxidative phosphorylation” and “mitochondrial dysfunction” appear as specific to B30 exhaust emission; the repression of transcripts of mitochondrial respiratory chain in lung of rats exposed to B30 downstream of DPF supports the perturbation of mitochondria function.This study done with a recent diesel engine (compliant with the European IV emission standard) and commercially-available fuels reveals that the diesel blend composition and the presence of an after treatment system may modify lung gene signature of rats repeatedly exposed to exhaust emissions, however in a rather modest manner.
Show more [+] Less [-]Bus commuter exposure and the impact of switching from diesel to biodiesel for routes of complex urban geometry Full text
2020
We report on commuters’ exposure to black carbon (BC), PM₂.₅ and particle number (PN, with aerodynamic diameter, dₐ, in the range 0.01 <dₐ< 1.0 μm) collected on-board diesel- and biodiesel-fuelled buses of the Bus Rapid Transit (BRT) system of the city of Curitiba, Brazil. Particulate concentrations measured at high sampling rates allowed the capture of fine gradients along the route and the comparison of in-cabin air pollution on buses of different technologies.Of all metrics, BC showed the largest discrepancies, with mean concentrations of 20.1 ± 20.0 μg m⁻³ and 3.9 ± 26.0 μg m⁻³ on diesel- and biodiesel-fuelled buses, respectively. Mean PM₂.₅ concentrations were similar (31.6 ± 28.5 μg m⁻³ and 29.0 ± 17.8 μg m⁻³), whilst mean PN concentrations were larger on the biodiesel buses (56,697 ± 26,800 # cm⁻³vs. 43,322 ± 32,243 # cm⁻³). The results are in line with studies on biodiesel emission factors that reported lower BC mass but more particles with smaller diameters. Our hypothesis is that different emission factors of diesel and biodiesel engines reflected in differences of in-cabin particulate concentrations. We found that the passenger exposure during the bus commutes was affected not only by the fuel used but also by the street geometry along the route, with segments with canyon configurations resulting in peak exposure to particulates. The results suggest that i) switching from diesel to biodiesel may help abate commuters’ exposure to BC particles on-board buses of the BRT system, whilst it would need to be complemented with after-treatment technologies to reduce emissions; ii) further reductions in exposure (to peaks in particular) could be achieved by changing bus routes to ones that avoid passing through narrow urban street canyons.
Show more [+] Less [-]A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources Full text
2020
Raksasat, Ratchaprapa | Lim, Jun Wei | Kiatkittipong, Worapon | Kiatkittipong, Kunlanan | Ho, Yeek Chia | Man-Kee Lam, | Font-Palma, Carolina | Mohd Zaid, Hayyiratul Fatimah | Cheng, Chin Kui
The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
Show more [+] Less [-]