Refine search
Results 1-10 of 60
Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity Full text
2018
Rožman, Marko | Acuña, V. (Vicenç) | Petrović, M. (Mira)
A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams.
Show more [+] Less [-]A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Full text
2018
Grubisic, Maja | van Grunsven, Roy H.A. | Manfrin, Alessandro | Monaghan, Michael T. | Hölker, Franz
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Show more [+] Less [-]Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms Full text
2018
Wilkinson, John L. | Hooda, Peter S. | Swinden, Julian | Barker, James | Barton, Stephen
Organic contaminants such as pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) are known to persist in the aquatic environment and many are indicated as endocrine, epigenetic, or other toxicants. Typically, the study of PPCPs/ECs in the aquatic environment is limited to their occurrence dissolved in river water. In this study, accumulation and spatial distribution of thirteen PPCPs/ECs were assessed in aquatic sediment (n = 23), periphyton (biofilm, n = 8), plants Callitriche sp. (n = 8) and Potamogeton sp. (n = 7) as well as amphipod crustaceans (Gammarus pulex, n = 10) and aquatic snails (Bithynia tentaculata, n = 9). All samples (n = 65) were collected from the Hogsmill, Blackwater and Bourne Rivers in southern England. Targeted PPCPs/ECs included pharmaceuticals, plasticisers, perfluorinated compounds, illicit drugs and metabolites. Extraction from solid matrices occurred using ultrasonic-assisted extraction followed by an in-house validated method for solid-phase extraction and subsequent liquid-chromatography tandem mass-spectrometry. Field-derived bioconcentration-factors and biota-sediment accumulation-factors were determined for all studied biota. Residues of studied contaminants were found in all sediment and biota. Concentrations of contaminants were generally higher in biota than sediment. Evidence suggests that the studied aquatic plants may effectively degrade bisphenol-A into its main transformation product hydroxyacetophenone, potentially mediated by cytochrome p450 and internalisation of contaminants into the cellular vacuole. A positive association between both hydrophobicity and PFC chain length and contaminant accumulation was observed in this work. Only PFCs, plasticisers and HAP were classified as either ‘bioaccumulative’ or ‘very bioaccumulative’ using BCF criteria established by guidelines of four governments. Contaminants appeared to be differentially bioaccumulative in biota, indicating there may be a need for a species-specific BCF/BSAF classification system. These data form a detailed accounting of PPCP/EC fate and distribution in the aquatic environment highlighting accumulation at lower trophic levels, a potential source for higher organisms.
Show more [+] Less [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Full text
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Full text
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Show more [+] Less [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Full text
2018
Frère, Laura | Maignien, Loïs | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul-Pont, Ika | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie des Environnements Extrêmophiles (LM2E) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Marine Biological Laboratory (MBL) ; University of Chicago | LABOCEA Laboratoire [Plouzané, France] | Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA) | ANR-15-CE34-0006,Nanoplastics,Microplastiques, nanoplastiques dans l'environnement marin: caractérisation, impacts et évaluation des risques sanitaires.(2015)
International audience | Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring
Show more [+] Less [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Full text
2018
Frere, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-laure | Lambert, Christophe | Reveillaud, Julie | Paul-pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Show more [+] Less [-]Microplastics increase impact of treated wastewater on freshwater microbial community Full text
2018
Eckert, Ester M. | Di Cesare, Andrea | Kettner, Marie Therese | Arias-Andres, Maria | Fontaneto, Diego | Grossart, Hans-Peter | Corno, Gianluca
Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (int1), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of int1 increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised.
Show more [+] Less [-]Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems Full text
2018
Zhang, Yingjie | Boyd, Stephen A. | Teppen, Brian J. | Tiedje, James M. | Zhang, Wei | Zhu, Dongqiang | Li, Hui
Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well.
Show more [+] Less [-]Extracellular polymeric substances affect the responses of multi-species biofilms in the presence of sulfamethizole Full text
2018
Wang, Longfei | Li, Yi | Wang, Li | Zhang, Huanjun | Zhu, Mengjie | Zhang, Peisheng | Zhu, Xiaoxiao
The occurrence and transportation of antibiotics in biofilms from natural and engineered sources have attracted increasing interests. Nevertheless, the effects of extracellular polymeric substances (EPS) on the responses of biofilms to the exposure to antibiotics are not clear. In this study, the effects of EPS on the sorption and biological responses to one representative antibiotic, sulfamethizole (STZ), in model biofilms were investigated. Proteins dominated the interactions between the EPS and the STZ and the EPS from a moving bed biofilm reactor exhibited the strongest interaction with the STZ. The EPS served as important reservoirs for the STZ and the tested biofilms all showed reduced sorption capacities for the STZ after the EPS were extracted. The respiratory rates and typical enzymatic activities were reduced after the EPS were extracted. High-throughput 16S rRNA gene sequencing results confirmed that the bacterial community in the biofilm without the EPS was more vulnerable to antibiotic shock as indicated by the community diversity and richness indices. A greater increase in the abundance of susceptible species was observed in the natural biofilm. The results comprehensively suggested that the EPS played important role in biosorption of STZ and alleviated the direct damage of the antibiotic to the cells; in addition the extent of the bacterial community response was associated with the origins of the biofilms. Our study provided details on the responses of multi-species biofilms to the exposure to an antibiotic and highlighted the role of the EPS in interacting with the antibiotic, thereby providing a deeper understanding of the bioremediation of antibiotics in real-life natural and engineered biofilm systems.
Show more [+] Less [-]Hot spots of antibiotic tolerant and resistant bacterial subpopulations in natural freshwater biofilm communities due to inevitable urban drainage system overflows Full text
2018
Kaeseberg, Thomas | Schubert, Sara | Oertel, Reinhard | Zhang, Jin | Berendonk, Thomas U. | Krebs, Peter
Antibiotic resistant bacteria are a threat to human life. Recently, sewers have been identified as potential reservoirs. The intermittent injection of sewage into adjacent surface waters is inevitable, due to capacity limitations of the urban drainage system. Information regarding the effect to natural freshwater biofilms (NFB) due to the intermittent contaminations are scarce. Therefore, a fundamental screening is necessary. In April, we placed NFB-attachment constructions in a brook upstream and downstream from urban drainage overflow constructions. In meanwhile two sampling campaigns were conducted. The sewage and the brook water were collected to gather information about antibiotic background exposure of ciprofloxacin (CIP), clarithromycin (CLA) and doxycycline (DOX). Six months later we experimentally determined the oxygen uptake rate (OUR) of the NFB-communities after a 24 h lasting exposure with additionally dosed antibiotics. Concentrations of 0.1, 1.0 and 10.0 mg L⁻¹ were selected. CIP, CLA and DOX were individually dosed, and also in mixtures. The mean antibiotic background concentration in sewage was in a range of 575.5–1289.1 ng L⁻¹, which mainly exceeded the concentrations published in literature. The determined mean concentration in the brook was in a range of 4.6–539.0 ng L⁻¹. The first significant inhibition of the OUR with individually dosed antibiotics started mainly at a concentration of 1.0 mg L⁻¹. Antibiotics in a mixture with concentrations of 0.1 and 1.0 mg L⁻¹ were as effective as single dosed antibiotics with a concentration of 10.0 mg L⁻¹. The increased antibiotic tolerance and resistance of NFB-communities downstream of the combined sewer overflow (CSO) structure was a consequence of a severe impact due to urban drainage overflows. Hence, NFB-communities downstream of CSO-constructions are hot spots of antibiotic tolerant and resistant subpopulations and access restrictions should be announced, if an infection risk is present.
Show more [+] Less [-]Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm Full text
2018
Park, Hyung-Geun | Kim, Jung In | Chang, Kwang-Hyeon | Lee, Byoung-cheun | Eom, Ig-chun | Kim, Pilje | Nam, Dong-Ha | Yeo, Min-Kyeong
We used replicated paddy microcosm systems to estimate the tropic transfer of citrate-coated silver nanoparticles (AgNP citrate), polyvinylpyrrolidone (PVP)-coated AgNP (AgNP PVP), and silver ions (AgNO₃) for 14 days under two exposure regimes (a single high-dose exposure; 60 μg L⁻¹ and a sequential low-dose exposure at 1 h, 4 days and 9 days; 20 μg L⁻¹ × 3 = 60 μg L⁻¹). Most Ag ions from AgNO₃ had dispersed in the water and precipitated partly on the sediment, whereas the two Ag NPs rapidly coagulated and precipitated on the sediment. The bioconcentration factors (BCFs) of Ag from AgNPs and AgNO₃ in Chinese muddy loaches and biofilms were higher than those of river snails in both exposure conditions. These BCFs were more prominent for 14 days exposure (7.30 for Chinese muddy loach; 4.48 for biofilm) in the low-dose group than in the single high-dose group. Their retention of AgNPs and Ag ions differed between the two exposure conditions, and uptake and elimination kinetics of Ag significantly differed between AgNP citrate and AgNP PVP in the sequential low-dose exposure. Stable isotopes analyses indicated that the trophic levels between Chinese muddy loaches and biofilms and between river snails and biofilms were 2.37 and 2.27, respectively. The biomagnification factors (BMFs) of AgNPs and AgNO₃ between Chinese muddy loaches and biofilms were significantly higher than those between river snails and biofilms under both exposure settings. The BMFs of AgNP citrate and AgNO₃ between Chinese muddy loaches and biofilms were greater than those of AgNP PVP for 14 days in the single high-dose group, whereas the BMFs of AgNP PVP were greater than those of AgNP citrate and AgNO₃ in the sequential low-dose group. These microcosm data suggest that AgNPs have the potential to impact on ecological receptors and food chains.
Show more [+] Less [-]Microplastic pollution increases gene exchange in aquatic ecosystems Full text
2018
Arias-Andres, Maria | Klümper, Uli | Rojas-Jimenez, Keilor | Grossart, Hans-Peter
Pollution by microplastics in aquatic ecosystems is accumulating at an unprecedented scale, emerging as a new surface for biofilm formation and gene exchange. In this study, we determined the permissiveness of aquatic bacteria towards a model antibiotic resistance plasmid, comparing communities that form biofilms on microplastics vs. those that are free-living. We used an exogenous and red-fluorescent E. coli donor strain to introduce the green-fluorescent broad-host-range plasmid pKJK5 which encodes for trimethoprim resistance. We demonstrate an increased frequency of plasmid transfer in bacteria associated with microplastics compared to bacteria that are free-living or in natural aggregates. Moreover, comparison of communities grown on polycarbonate filters showed that increased gene exchange occurs in a broad range of phylogenetically-diverse bacteria. Our results indicate horizontal gene transfer in this habitat could distinctly affect the ecology of aquatic microbial communities on a global scale. The spread of antibiotic resistance through microplastics could also have profound consequences for the evolution of aquatic bacteria and poses a neglected hazard for human health.
Show more [+] Less [-]