Refine search
Results 1-10 of 14
Household biomass fuel use, blood pressure and carotid intima media thickness; a cross sectional study of rural dwelling women in Southern Nigeria Full text
2018
Ofori, Sandra N. | Fobil, Julius N. | Odia, Osaretin J.
Rising prevalence of cardiovascular disease requires in-depth understanding of predisposing factors. Studies show an association between air pollution and CVD but this association is not well documented in southern Nigeria where the use of biomass fuels (BMF) for domestic purposes is prevalent.This study aimed to explore the association between household BMF use and blood pressure (BP) and carotid intima media thickness (CIMT) among rural-dwelling women.A cross-sectional study of 389 women aged 18 years and older. Questionnaires were used to obtain data on predominant fuel used and a brief medical history. Wood, charcoal and agricultural waste were classified as BMF while kerosene, bottled gas and electricity were classified as non-BMF. Blood pressure and CIMT were measured using standard protocols. Regression analysis was used to assess the relationship between fuel type and BP, CIMT, pre-hypertension and hypertension after adjusting for confounders.There was a significant difference in the mean (standard deviation) systolic BP (135.3, 26.7 mmHg vs 123.8, 22.6 mmHg; p < 0.01), diastolic BP (83.7, 18.5 mmHg vs 80.1, 13.8 mmHg; p = 0.043) and CIMT (0.63, 0.16 mm vs 0.56, 0.14 mm; p = 0.004) among BMF users compared to non-BMF users. In regression analysis, the use of BMF was significantly associated with 2.7 mmHg higher systolic BP (p = 0.040), 0.04 mm higher CIMT (p = 0.048) in addition to increased odds of pre-hypertension (OR 1.67 95% CI 1.56, 4.99, P = 0.035) but not hypertension (OR 1.23 95% CI 0.73, 2.07, P = 0.440).In this population, there was a significant association between BMF use and increased SBP, CIMT and pre-hypertension. This requires further exploration with a large-scale longitudinal study design because there are policy implications for countries like Nigeria where a large proportion of the population still rely on BMF for domestic energy.
Show more [+] Less [-]Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes Full text
2018
Kang, Mingjie | Ren, Lujie | Ren, Hong | Zhao, Ye | Kawamura, Kimitaka | Zhang, Hongliang | Wei, Lianfang | Sun, Yele | Wang, Zifa | Fu, Pingqing
Sugars and n-alkanes are important organic constituents of atmospheric fine particulate matter (PM₂.₅). For better understanding their sources and seasonal variations in urban atmosphere, sugar compounds (anhydrosugars, sugars and sugar alcohols) and homologue n-alkanes (C₁₈–C₃₇) were studied in PM₂.₅ samples collected from September 2013 to July 2014 in Beijing, China. In general, all measured compounds showed the lowest levels in summer. Higher concentrations of sugar compounds and n-alkanes were observed in winter, probably due to elevated combustion emissions (e.g., coal, biofuel and agricultural residue burning) and stable meteorological conditions during heating season. Levoglucosan was the major sugar species in all seasons particularly in autumn and winter, highlighting the significant contribution of biomass burning to fine organic aerosols throughout the whole year especially in cold seasons. Plant waxes contributed to n-alkanes the most in late spring (54.5%) and the least in winter (11.6%); while fossil fuel combustion had the largest contribution in winter (385 ng m⁻³). The weak odd-carbon predominance of n-alkanes in wintertime aerosols also suggests fossil fuel combustion as the important source of organic aerosols in the heating season. Soil resuspension, fossil fuel combustion and biomass burning, and secondary sources are the main sources of OC in PM₂.₅ at Beijing. The seasonal variation in source contributions indicates that meteorological condition is a key factor in controlling PM₂.₅ levels. Furthermore, dust storms in spring can strongly enhance the atmospheric level of fine organic matter in Beijing.
Show more [+] Less [-]Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves Full text
2018
Xie, Mingjie | Shen, Guofeng | Holder, Amara L. | Hays, Michael D. | Jetter, James J.
Household cookstove emissions are an important source of carbonaceous aerosols globally. The light-absorbing organic carbon (OC), also termed brown carbon (BrC), from cookstove emissions can impact the Earth's radiative balance, but is rarely investigated. In this work, PM2.5 filter samples were collected during combustion experiments with red oak wood, charcoal, and kerosene in a variety of cookstoves mainly at two water boiling test phases (cold start CS, hot start HS). Samples were extracted in methanol and extracts were examined using spectrophotometry. The mass absorption coefficients (MACλ, m2 g−1) at five wavelengths (365, 400, 450, 500, and 550 nm) were mostly inter-correlated and were used as a measurement proxy for BrC. The MAC365 for red oak combustion during the CS phase correlated strongly to the elemental carbon (EC)/OC mass ratio, indicating a dependency of BrC absorption on burn conditions. The emissions from cookstoves burning red oak have an average MACλ 2–6 times greater than those burning charcoal and kerosene, and around 3–4 times greater than that from biomass burning measured in previous studies. These results suggest that residential cookstove emissions could contribute largely to ambient BrC, and the simulation of BrC radiative forcing in climate models for biofuel combustion in cookstoves should be treated specifically and separated from open biomass burning.
Show more [+] Less [-]Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends Full text
2018
Sakthivel, R. (Rajamohan) | Kasimani, Ramesh
This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.
Show more [+] Less [-]Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest Full text
2018
Pogrzeba, Marta | Rusinowski, Szymon | Krzyżak, Jacek
Heavy metals (HMs) contamination of soils is a major problem occurring worldwide. Utility of energy crops for biofuel feedstock production systems offers a feasible solution for a commercial exploitation of an arable land contaminated with HMs. Experiments involved field testing of Miscanthus x giganteus and Spartina pectinata cultivated on HMs-contaminated soil with standard NPK fertilizers and commercially available microbial inoculum. Biomass yield, water content, macronutrients (N, P, K, Mg, Ca), and heavy metal (Cd, Pb, Zn) concentrations in plant shoots were assessed at the end of the first and the second growing season. Independently of the applied fertilizers, Miscanthus x giganteus produced higher biomass yield while contrary results were obtained for S. pectinata. Higher HMs content in plants influenced the status of the mineral macronutrients in particular N and K. Occurrence of hasted senescence induced by drought in the second growing season caused reduction in the concentrations of all elements (except Pb), due to earlier rhizomes relocation.
Show more [+] Less [-]Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield Full text
2018
Tsegaye, Bahiru | Balomajumder, Chandrajit | Roy, Partha
Pretreatment is a vital step to enhance the yield of total reducing sugars and biofuel production from lignocellulose biomass. An effective new lignin-degrading and polysaccharide-hydrolyzing bacteria, Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 strains, were isolated and identified from wood-feeding termite’s guts. Wheat straw was biodelignified by Ochrobactrum oryzae BMP03 bacteria strains to degrade lignin and to release the trapped cellulose and hemicellulose. The biodelignified wheat straw was hydrolyzed by Bacillus sp. BMP01 strains. Ochrobactrum oryzae BMP03-Bacillus sp. BMP01 consortia were also performed to analyze the effect of the simultaneous system. It was shown that the production of total reducing sugars in a separate hydrolysis system by Bacillus sp. BMP01 strain achieved 439 mg/g at 16 days of hydrolysis time, which is 9.45% higher than the simultaneous system. About 44.47% lignin was degraded by the Ochrobactrum oryzae BMP03 strain after 16 days of biotreatment. This also contributed for increment in cellulose content by 22.38% and hemicellulose content by 18.64%. The simultaneous system converted 368 mg of reducing sugars/g of wheat straw. Separate biodelignification and hydrolysis have an advantage over the simultaneous system in terms of hydrolysis efficiency and vice versa in terms of biotreatment time. Scanning electron microscope, mid-infrared analysis by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis confirmed the change in composition due to biotreatment. The biotreatment improved hydrolysis efficiency, which reduces the cost of biofuel production and increases the yield of biofuel. These results indicate the possibilities of biofuel production from wheat straw by employing Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria strains.
Show more [+] Less [-]Community response to a sustainable restoration plan for a superfund site Full text
2018
Sidhu, Virinder | Sarkar, Dibyendu | Datta, Rupali | Solomon, Barry
Large-scale copper (Cu) mining activities in Michigan’s Upper Peninsula produced millions of metric tons of mining wastes also known as stamp sands. The stamp sands containing high concentrations of Cu were disposed of into several lakes connected to the Lake Superior. Eventually, as aquatic organisms in these lakes started to exhibit toxicity symptoms, the stamp sands were dredged and discarded on the lake shores. Consequently, these areas turned into degraded, marginal lands and were collectively classified as a Torch Lake Superfund site by the US EPA. Due to the lack of vegetative cover, the Cu-rich stamp sands eroded into the lakes, affecting the aquatic life. To alleviate this issue, a sustainable restoration plan (SRP) was developed and tested in a greenhouse environment prior to field implementation. Cold-tolerant oilseed crops, camelina (Camelina sativa) and field pennycress (Thlaspi arvense), were grown on compost-fertilized stamp sands, which reduced soil erosion by acting as a vegetative cap. Oilseed plants produced normal yield, demonstrating their potential utilization as biofuel feedstock. Prior to implementing the SRP in field-scale in the Torch Lake Superfund site, a public opinion survey of the local community was conducted to understand the views of residents. Door-to-door survey was performed in July–August 2015, which yielded a response rate of 68.1%. Results showed that residents were generally concerned with stamp sand erosion into the Torch Lake and were overwhelmingly supportive of the SRP, which would not only provide environmental benefits but could boost the local economy via biofuel production. To gauge the general environmental awareness of the respondents, the survey included questions on climate change. Most of the respondents acknowledged that climate change is real and anthropogenically mediated. Having college education and a relatively high annual household income showed a positive and significant correlation with climate change awareness.
Show more [+] Less [-]The impact of hydro-biofuel-wind energy consumption on environmental cost of doing business in a panel of BRICS countries: evidence from three-stage least squares estimator Full text
2018
Zaman, Khalid
The renewable energy sources are considered the vital factor to promote global green business. The environmental cost of doing business is the pre-requisite to analyze sustainable policies that facilitate the eco-minded entrepreneurs to produce healthier goods. This study examines the impact of renewable energy sources (i.e., hydro energy, biofuel energy, and wind energy) on the environmental cost of doing business in a panel of BRICS (Brazil, Russian Federation, India, China, and South Africa) countries, for the period of 1995–2015. The study employed principal component analysis to construct an “integrated environmental index” by using three alternative and plausible factors including carbon dioxide emissions, fossil fuel energy consumption, and chemicals used in the manufacturing process. The environmental index is used as an interactive term with the three cost of doing business indicators including business disclosure index, the cost of business start-up procedures, and logistics performance index to form environmental cost of doing business (ECDB) indicators. The results of three-stage least squares (3SLS) estimator show that foreign direct investment (FDI) inflows supported the green business while trade openness deteriorates the environment, which partially validates the “pollution haven hypotheses (PHH)” in a panel of countries. There is no evidence for environmental Kuznets curve (EKC) hypothesis; however, there is a monotonic decreasing relationship between per capita income and ECDB indicators. The hydro energy supports the sustainable business environment, while biofuel consumption deteriorates the environmental impact on the cost of business start-up procedures. Finally, wind energy subsequently affected the ECDB indicators in a panel of BRICS countries. The overall results conclude that growth factors and energy sources both have a considerable impact on the cost of doing business; therefore, there is a momentous need to formulate sustainable policy vista to magnetize green business across countries.
Show more [+] Less [-]Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine Full text
2018
Sakthivel, R. (Rajamohan) | Kasimani, Ramesh
The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).
Show more [+] Less [-]Impact of military on biofuels consumption and GHG emissions: the evidence from G7 countries Full text
2018
Bildirici, Melike
It was aimed to test the relation among the greenhouse gases emissions, economic growth, biofuels consumption, and militarization in G7 countries during the 1985–2015 period by Pedroni 1995 and panel Johansen tests and two long-run estimators—dynamic OLS and fully modified OLS. Long-run estimators found that economic growth and militarization have statistically significant positive impact on CO₂ emission of G7 countries. Furthermore, the panel causality tests were applied: Dumitrescu and Hurlin (Econ Model 29(4):1450–1460, 2012) and panel Granger causality. These tests determined the causal relationship between the variables. The results of this paper implied that economic growth and biofuels consumption depend on militarization, and economic growth and militarization are granger causes of the greenhouse gases emissions.
Show more [+] Less [-]