Refine search
Results 1-10 of 94
Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream Full text
2021
Chandler, Lisa | Harford, Andrew J. | Hose, Grant C. | Humphrey, Chris L. | Chariton, Anthony | Greenfield, Paul | O'Neill, Jenny
Bacteria and archaea (prokaryotes) are vital components for maintaining healthy function of groundwater ecosystems. The prokaryotic community composition and associated putative functional processes were examined in a shallow sandy aquifer in a wet-dry tropical environment. The aquifer had a contaminated gradient of saline mine-water, which primarily consisted of elevated magnesium (Mg²⁺) and sulfate (SO₄²⁻), although other major ions and trace metals were also present. Groundwaters were sampled from piezometers, approximately 2 m in depth, located in the creek channel upstream and downstream of the mine-water influence. Sampling occurred during the dry-season when only subsurface water flow was present. Next generation sequencing was used to analyse the prokaryote assemblages using 16S rDNA and metabolic functions were predicted with FAPROTAX. Significant changes in community composition and functional processes were observed with exposure to mine-waters. Communities in the exposed sites had significantly lower relative abundance of methanotrophs such as Methylococcaceae and methanogens (Methanobacteriaceae), but higher abundance in Nitrososphaeraceae, associated with nitrification, indicating potentially important changes in the biogeochemistry of the exposed sites. The changes were most strongly correlated with concentrations of SO₄²⁻, Mg²⁺ and Na⁺. This knowledge allows an assessment of the risk of mine-water contamination to groundwater ecosystem function and aids mine-water management.
Show more [+] Less [-]Multi-factor identification and modelling analyses for managing large river algal blooms Full text
2019
Xia, Rui | Zhang, Yuan | Wang, Gangsheng | Zhang, Yongyong | Dou, Ming | Hou, Xikang | Qiao, Yunfeng | Wang, Qiang | Yang, Zhongwen
River algal blooms have become a newly emerging global environmental issue in recent decades. Compared with water eutrophication in lakes and reservoirs, algal blooms in large river systems can cause more severe consequences to watershed ecosystems at the watershed scale. However, reveal the causes of river algal blooms remains challenging in the interdisciplinary of hydrological-ecological-environmental research, due to its complex interaction mechanisms impacted by multiple factors. In addition, there were still considerable uncertainties on the characteristics, impacts, driving factors, as well as the applicable water system models for river algal blooms. In this paper, we reviewed existing literature to elaborate the definition and negative effects of river algal blooms. We analyzed sensitive factors including nutrient, hydrological and climatic elements. We also discussed the application of ecohydrological models under complicated hydrological conditions. Finally, we explored the essence of the river algal bloom by the interaction effects of physical and biogeochemical process impacted by of climate change and human activities. The model-data integration accounting for multi-factor effects was expected to provide scientific guidance for the prevent and control of algal blooms in large river systems.
Show more [+] Less [-]Glycine transformation induces repartition of cadmium and lead in soil constituents Full text
2019
Zhang, Yulong | He, Shuran | Zhang, Zhen | Xu, Huijuan | Wang, Jinjin | Chen, Huayi | Liu, Yonglin | Wang, Xueli | Li, Yongtao
Heavy metal stress in soil accelerates the plant root exudation of organic ligands. The degradation of exudate ligands can be fundamental to controlling the complexation of heavy metals. However, this process remains poorly understood. Here, we investigated the relationship between the transformation of glycine, a representative amino acid exudate, and cadmium/lead mobility in soils. Two 48-h incubation experiments were conducted after glycine addition to the soils. Parameters related to glycine distribution and degradation, Cd/Pb mobility, and the formation of glycine-Cd complex were analyzed. Glycine addition gradually decreased the Cd and Pb mobility throughout the 48-h incubation. By the end of the experiment, the CaCl₂-extracted Cd and Pb concentrations decreased by 63.5% and 43.6%, respectively. The glycine mineralization was strong in the first 6 h, as indicated by a sharp decrease in CO₂ efflux rates from 10.04 ± 0.62 to 3.51 ± 0.07 mg C–CO₂ kg⁻¹ soil h⁻¹. The mineralization rates notably decreased after 6 h. The comparisons of dissolved organic carbon and hydrolyzable amino acid contents indicated that glycine mineralization in solution (95.6%) was much stronger than that in soil solids (49.3%). At the end of incubation, 0.22 mmol kg⁻¹ glycine remained in soil solids. The remaining glycine provided sufficient sorption sites for Cd²⁺ and Pb²⁺, resulting in enhanced metal fixation via complexation. Comparisons of zeta potentials supported the formation of the glycine-Cd complex. The Cd and Pb immobilization processes could be attributed to metal-glycine complex formation, sorption re-equilibrium, and glycine degradation. These findings emphasize that the biogeochemical processes of glycine, derived from root exudates or protein degradation products, increased the sorption of heavy metals to soils and thus reduced their toxicity to plants.
Show more [+] Less [-]Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition Full text
2015
Blackwell, Bradley D. | Driscoll, Charles T.
We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately.
Show more [+] Less [-]Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China Full text
2012
Liu, Bian | Yan, Haiyu | Wang, Cuiping | Li, Qiuhua | Guédron, Stéphane | Spangenberg, Jorge E. | Feng, Xinbin | Dominik, Janusz
We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664–7421 ng g⁻¹) and monomethylmercury (MMHg, 3–21 ng g⁻¹) in the surface sediments (0–10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0–4 m), which was most pronounced for the dissolved MMHg (p < 0.001). However, mercury levels in biota samples (mostly cyprinid fish) were one order of magnitude lower than common regulatory values (i.e. 0.3–0.5 mg kg⁻¹) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir.
Show more [+] Less [-]Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges Full text
2022
Liu, Yonghua | Chen, Hanqing | Zhu, Nali | Zhang, Jing | Li, Yufeng | Xu, Diandou | Gao, Yuxi | Zhao, Jiating
Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation.
Show more [+] Less [-]Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management Full text
2021
Rahaman, Md Shiblur | Rahman, Md Mostafizur | Mise, Nathan | Sikder, Md Tajuddin | Ichihara, Gaku | Uddin, Md Khabir | Kurasaki, Masaaki | Ichihara, Sahoko
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca²⁺) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Show more [+] Less [-]Plastic pollution impacts on marine carbon biogeochemistry Full text
2021
Galgani, Luisa | Loiselle, Steven A.
One of the major challenges in understanding the dynamics of the ocean’s health and functioning is the potential impact of the increasing presence of plastic. Besides the verified and macroscopic effects on marine wildlife and habitats, micro and macroplastics offer potential sites for microbial activity and chemical leaching. Most marine plastic is found initially in the upper meters of the water column, where fundamental biogeochemical processes drive marine productivity and food web dynamics. However, recent findings show a continuum of potential effects of these new marine components on carbon, nutrients and microbial processes. In the present analysis, we develop a common ground between these studies and we identify knowledge gaps where new research efforts should be focused, to better determine potential feedbacks of plastics on the carbon biogeochemistry of a changing ocean.
Show more [+] Less [-]Conductive property of secondary minerals triggered Cr(VI) bioreduction by dissimilatory iron reducing bacteria Full text
2021
Zhang, Ke | Li, Na | Liao, Peng | Jin, Yuwen | Li, Qiongyao | Gan, Min | Tan, Yau Chong | He, Peng | Chen, Fang | Peng, Mingxian | Zhu, Jianyu
Although secondary minerals have great potential for heavy metal removal, their impact on chromium biogeochemistry in subsurface environments associated with dissimilatory iron reducing bacteria (DIRB) remains poorly characterized. Here, we have investigated the mechanisms of biogenic secondary minerals on the rate of Cr(VI) bioreduction with shewanella oneidensis MR-1. Batch results showed that the biogenic secondary minerals, schwertmannite and jarosite, appreciably increased the Cr(VI) bioreduction rate. UV–vis diffuse reflection spectra showed that schwertmannite and jarosite are semiconductive minerals, which can be activated by MR-1, followed by transferred conduction electrons toward Cr(VI). Cyclic voltammetry and Tafel analysis suggested that the resistance of secondary minerals is a dominant factor controlling Cr(VI) bioreduction. In addition, Cr(VI) adsorption on secondary minerals through ligand exchange promoted Cr(VI) bioreduction by decreasing the electron transfer distance between MR-1 and chromate. Fe(III)/Fe(II) cycling in schwertmannite and jarosite also contributed to Cr(VI) bioreduction as reflected by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. Complementary characterizations further verified the contributions of Fe(III)/Fe(II) cycling, Cr(VI) adsorption, and conduction band electron transfer to enhanced Cr(VI) bioreduction. This study provides new insights on the understanding of Cr(VI) bioreduction by semiconductor minerals containing sulfate in subsurface environments.
Show more [+] Less [-]Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water–soil interface Full text
2020
Lu, Haiying | Dong, Yue | Feng, Yuanyuan | Bai, Yanchao | Tang, Xianjin | Li, Yuncong | Yang, Linzhang | Liu, Junzhuo
Periphyton plays a significant role in heavy metal transfer in wetlands, but its contribution to cadmium (Cd) bioavailability in paddy fields remains largely unexplored. The main aim of this study was to investigate the effect of periphyton on Cd behavior in paddy fields. Periphyton significantly decreased Cd concentrations in paddy waters. Non-invasive micro-test technology analyses indicated that periphyton can absorb Cd from water with a maximum Cd²⁺ influx rate of 394 pmol cm⁻² s⁻¹ and periphyton intrusion significantly increased soil Cd concentrations. However, soil Cd bioavailability declined significantly due to soil pH increase and soil redox potential (Eh) decrease induced by periphyton. With periphyton, more Cd was adsorbed and immobilized on organic matter, carbonates, and iron and manganese oxides in soil. Consequently, Cd content in rice decreased significantly. These findings give insights into Cd biogeochemistry in paddy fields with periphyton, and may provide a novel strategy for reducing Cd accumulation in rice.
Show more [+] Less [-]