Refine search
Results 1-10 of 334
Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Full text
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor | Department of Analytical Chemistry, University of the Basque Country UPV/ EHU ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Plentzia Marine Station, University of the Basque Country ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Organic and Inorganic Chemistry, University of the Basque Country | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Agencia Estatal de Investigaci ́on (AEI) of Spain | European Regional Development Fund through project CTM2017–84763-C3–1-R | Basque Government through the financial support as a consolidated group of the Basque Research System (IT1213–19) | University of the Basque Country | Université de Pau et des Pays de l'Adour
Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Full text
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor | Department of Analytical Chemistry, University of the Basque Country UPV/ EHU ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Plentzia Marine Station, University of the Basque Country ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Organic and Inorganic Chemistry, University of the Basque Country | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Agencia Estatal de Investigaci ́on (AEI) of Spain | European Regional Development Fund through project CTM2017–84763-C3–1-R | Basque Government through the financial support as a consolidated group of the Basque Research System (IT1213–19) | University of the Basque Country | Université de Pau et des Pays de l'Adour
International audience | The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone. ☆ This paper has been recommended for acceptance by. Eddy Y. Zeng. ☆☆ Contaminants of Emerging Concern in Glass Eel (Anguilla anguilla): Occurrence, Bioconcentration and Biotransformation.
Show more [+] Less [-]Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France) Full text
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor
The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.
Show more [+] Less [-]Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities Full text
2014
Givaudan, Nicolas | Binet, Françoise | Le Bot, Barbara | Wiegand, Claudia | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Institut de recherche en santé, environnement et travail (Irset) ; Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique) | École des Hautes Études en Santé Publique [EHESP] (EHESP) | European University of Brittany via the International Chair of Excellence in Agronomy and Environment granted to C. Wiegand and to ECOBIO laboratory, and by the Institute français du Danemark. It is also part of the LIA "Environmental Toxicology and Stress Ecology" sustained by the CNRS-INEE, the University of South Danemark and the University of Rennes1.
International audience | This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole.
Show more [+] Less [-]Promotion of the biodegradation of phenanthrene adsorbed on microplastics by the functional bacterial consortium QY1 in the presence of humic acid: Bioavailability and toxicity evaluation Full text
2022
Zhu, Minghan | Yin, Hua | Yuan, Yibo | Qi, Xin | Liu, Hang | Wei, Xipeng | Luo, Haoyu | Dang, Zhi
The adsorption of hydrophobic organic compounds (HOCs) by microplastics (MPs) has attracted great attention in recent years. However, the ultimate environmental fate of the HOCs sorbed on MPs (HOCs-MPs) is poorly understood. In this work, we investigated the potential influence of the biotransformation process on the environmental fate of phenanthrene (PHE, a model HOC) sorbed on MPs (PHE-MPs) under the existence of humic acid (HA, the main ingredient of dissolved organic matter (DOM)) in the aquatic environment. The results indicated that the adsorption behavior of PHE on MPs decreased its bioavailability and thus inhibited its biotransformation efficiency. However, HA significantly promoted the biodegradation rate and percentage of PHE-MPs. This was probably because HA improved the desorption of PHE from MPs, which promoted the acquisition of PHE by bacteria from the aqueous phase. Further, HA dramatically increased the bacterial community diversity and richness and altered the community composition. The richness of some PHE-degrading bacteria, such as Methylobacillus and Sphingomonas, significantly increased, which may also be an important factor for promoting PHE biodegradation. Molecular ecological network analysis implied that HA enhanced the modularity and complexity of bacterial interaction networks, which was beneficial to maintaining the functional stability of the consortium QY1. Besides, HA decreased the cytotoxicity of functional microbes induced by HOCs-MPs. This work broadens our knowledge of the environmental fate of HOCs-MPs and interactions of MPs, HOCs, DOMs and functional microbial consortiums in aqueous environments.
Show more [+] Less [-]Influence of tetracycline on arsenic mobilization and biotransformation in flooded soils Full text
2022
Shen, Yue | Yu, Haodan | Lin, Jiahui | Guo, Ting | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
This study examined the effect of tetracycline addition on arsenic (As) mobilization and biotransformation in two contrasting soils (upland soil and paddy soil) under flooded conditions. The soils with added tetracycline (0–50 mg kg⁻¹) were incubated for 30 days, and soil properties and microbial functional genes over time were quantified. Tetracycline significantly promoted As reduction and As release into porewater in both soils. The enhancement had resulted from an increase in the concentration of dissolved organic carbon and a decrease in soil redox potential. Tetracycline also increased the abundances of As-reducing genes (arsC and arrA) and the relative abundances of As-reducing bacteria Streptomyces, Bacillus, Burkholderia, Clostridium and Rhodococcus, all of which have been found resistant to tetracycline. These genera play a key part in stimulating As reduction in the presence of tetracycline. The study indicated the significance of tetracycline in the biochemical behavior of As in flooded soils and provided new insights into the potential effects of tetracycline on the quality and safety of agricultural products in the future.
Show more [+] Less [-]Biochemical alterations caused by lanthanum and gadolinium in Mytilus galloprovincialis after exposure and recovery periods Full text
2022
Cunha, Marta | Louro, Patricia | Silva, Mónica | Soares, Amadeu M.V.M. | Pereira, Eduarda | Freitas, Rosa
The increasing use of rare earth elements (REEs) in electric and electronic equipment has been associated with the presence of these elements in aquatic systems. The present study aimed to evaluate the toxicity of two REEs, Lanthanum (La) and Gadolinium (Gd), towards the mussel species Mytilus galloprovincialis. For this, the toxicity was assessed after a short-term exposure (14 days) to an environmentally relevant concentration of each element (10 μg/L), followed by a recovery period (14 days) in the absence of any contaminant. The measured biomarkers included energy-related parameters, activity of antioxidant and biotransformation enzymes, indicators of oxidative damage, levels of oxidized glutathione and neurotoxicity. After exposure mussels accumulated more La (0.54 μg/g) than Gd (0.15 μg/g). After recovery higher concentration decrease was observed for Gd (≈40% loss) compared to La exposed mussels (≈30% loss) which may be associated with lower detoxification capacity of mussels previously exposed to La. Mussels increased their metabolism (i.e., higher electron transport system activity) only after the exposure to Gd. Exposure to La and Gd resulted into lower energy expenditure, while when both elements were removed glycogen and protein concentrations decreased to values observed in non-contaminated mussels. Antioxidant and biotransformation capacity was mainly increased in the presence of Gd. This defense response avoided the occurrence of cellular damage but still loss of redox balance was found regardless the contaminant, which was re-established after the recovery period. Neurotoxicity was only observed in the presence of Gd with no effects after the recovery period. Results showed that a short-term exposure to La and especially to Gd can exert deleterious effects that may compromise specific biochemical pathways in aquatic species, such as M. galloprovincialis, but under low concentrations organisms can be able to re-establish their biochemical status to control levels after a recovery period.
Show more [+] Less [-]Does ancient permafrost-derived organic carbon affect lake zooplankton growth? An experimental study on Daphnia magna Full text
2022
Su, Yaling | Gan, Yingxin | Shi, Limei | Li, Kuanyi | Liu, Zhengwen
The popular paradigm in trophic dynamic theory is that contemporary autochthonous organic matter (e.g., phytoplankton) sustains consumer growth, whereas aged allochthonous organic matter is conceptually considered recalcitrant resources that may only be used to support consumer respiration but suppress consumer growth. This resource-age paradigm has been challenged by a growing body of recent evidence that ancient (radiocarbon depleted) organic carbon (OC) released from glaciers and permafrost can be incorporated by consumers in aquatic systems. However, little information is available regarding the food quality of ancient terrestrial OC and how it impacts the growth of consumers in lakes. Here, ancient dissolved organic carbon (DOC) was extracted from frozen soils in an alpine lake catchment. The contents of polyunsaturated fatty acids (PUFAs) in soil DOC increased significantly after bioconversion by heterotrophic bacteria. The utilization of soil DOC by heterotrophic bacteria also increased the total phosphorus concentration in the systems. Gammaproteobacteria and Betaproteobacteria showed a strong negative correlation with the percentage contents of fluorescent components, including humic-like and tyrosine-like components. Daphnia magna were fed Auxenochlorella vulgaris and ancient DOC plus heterotrophic bacteria. The contents of PUFAs and the growth of zooplankton were influenced by the pre-conversion time of ancient DOC by bacteria. When ancient DOC was pre-converted by bacteria for 27 days, D. magna fed on the mixed diets showed the highest body length (3.40 mm) and intrinsic rate of increase in population (0.49 d⁻¹). Our findings provide direct evidence that ancient terrestrial OC can be an important subsidy for lake secondary production, which have important implications for food webs in high-altitude and polar lakes.
Show more [+] Less [-]Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach Full text
2021
Hu, Xiaomeng | Subramanian, Karpagam | Wang, Huaimin | Roelants, Sophie L.K.W. | To, Ming Ho | Soetaert, Wim | Kaur, Guneet | Lin, Carol Sze Ki | Chopra, Shauhrat S.
Microbial biosurfactants are surface-active molecules that are naturally produced by a range of microorganisms. They have certain advantages over chemical surfactants, such as lower toxicity, higher biodegradability, anti-tumor, and anti-microbial properties. Sophorolipids (SLs) in particular are one of the most promising biosurfactants, as they hold the largest share of the biosurfactant market. Currently, researchers are developing novel approaches for SL production that utilize renewable feedstocks and advanced separation technologies. However, challenges still exist regarding consumption of materials, enzymes, and electricity, that are primarily fossil based. Researchers lack a clear understanding of the associated environmental impacts. It is imperative to quantify and optimize the environmental impacts associated with this emerging technology very early in its design phase to guide a sustainable scale-up. It is necessary to take a collaborative perspective, wherein life cycle assessment (LCA) experts work with experimentalists, to quantify environmental impacts and provide recommendations for improvements in the novel waste-derived SL production pathways. Studies that have analyzed the environmental sustainability of microbial biosurfactant production are very scarce in literature. Hence, in this work, we explore the possibility of applying LCA to evaluate the environmental sustainability of SL production. A dynamic LCA (dLCA) framework that quantifies the environmental impacts of a process in an iterative manner, is proposed and applied to evaluate SL production. The first traversal of the dLCA was associated with the selection of an optimal feedstock, and results identified food waste as a promising feedstock. The second traversal compared fermentation coupled with alternative separation techniques, and highlighted that the fed-batch fermentation of food waste integrated with the in-situ separation technique resulted in less environmental impacts. These results will guide experimentalists to further optimize those processes, and improve the environmental sustainability of SL production. Resultant datasets can be iteratively used in subsequent traversals to account for technological changes and mitigate the corresponding impacts before scaling up.
Show more [+] Less [-]Nontarget analysis reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice Full text
2021
Li, Xueshu | Liu, Yanna | Martin, Jonathan W. | Cui, Julia Yue | Lehmler, Hans-Joachim
Mammalian polychlorinated biphenyl (PCB) metabolism has not been systematically explored with nontarget high-resolution mass spectrometry (Nt-HRMS). Here we investigated the importance of the gut microbiome in PCB biotransformation by Nt-HRMS analysis of feces from conventional (CV) and germ-free (GF) adult female mice exposed to a single oral dose of an environmental PCB mixture (6 mg/kg or 30 mg/kg in corn oil). Feces were collected for 24 h after PCB administration, PCB metabolites were extracted from pooled samples, and the extracts were analyzed by Nt-HRMS. Twelve classes of PCB metabolites were detected in the feces from CV mice, including PCB sulfates, hydroxylated PCB sulfates (OH-PCB sulfates), PCB sulfonates, and hydroxylated methyl sulfone PCBs (OH-MeSO₂-PCBs) reported previously. We also observed eight additional PCB metabolite classes that were tentatively identified as hydroxylated PCBs (OH-PCBs), dihydroxylated PCBs (DiOH-PCBs), monomethoxylated dihydroxylated PCBs (MeO-OH-PCBs), methoxylated PCB sulfates (MeO-PCB sulfates), mono-to tetra-hydroxylated PCB quinones ((OH)ₓ-quinones, x = 1–4), and hydroxylated polychlorinated benzofurans (OH-PCDF). Most metabolite classes were also detected in the feces from GF mice, except for MeO-OH-PCBs, OH-MeSO₂-PCBs, and OH-PCDFs. Semi-quantitative analyses demonstrate that relative PCB metabolite levels increased with increasing dose and were higher in CV than GF mice, except for PCB sulfates and MeO-PCB sulfates, which were higher in GF mice. These findings demonstrate that the gut microbiome plays a direct or indirect role in the absorption, distribution, metabolism, or excretion of PCB metabolites, which in turn may affect toxic outcomes following PCB exposure.
Show more [+] Less [-]New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio) Full text
2021
Chai, Tingting | Cui, Feng | Di, Shanshan | Wu, Shenggan | Zhang, Yiming | Wang, Xinquan
Fluoxetine is frequently detected in aquatic environment, and chronic FLX exposure exhibits adverse effects on aquatic communities. Its chirality makes the adverse effects more complicated. This study aimed at the enantioselective cardiotoxicity in developmental zebrafish induced by racemic (rac-)/S-/R-fluoxetine. The accumulation profiles demonstrated that biotransformation of fluoxetine to norfluoxetine occurred during rac-fluoxetine exposure, with a higher enrichment of S-norfluoxetine than R-norfluoxetine. Heart malformations including pericardial edema, circulation abnormalities, and thrombosis were observed, and enantioselective changes also occurred. According to H&E staining and Masson’s trichrome staining, the loose severity of cardiac structure and cardiac fibrosis in rac-norfluoxetine treated group was worse than that in fluoxetine treated groups. Results of toxicity-associated parameters in our homochiral enantiomers’ exposure also indicated that the toxicity induced by S-fluoxetine was more severe than R-fluoxetine. Enantioselective arrhythmia in developmental zebrafish after chiral fluoxetine exposure could be caused by myocardial fibrosis, abnormal developmental processes, and the biotransformation of fluoxetine to norfluoxetine could make that worse. Our findings can be used to assess the environmental risk of the two enantiomers of fluoxetine that induce cardiotoxicity in aquatic organisms.
Show more [+] Less [-]