Refine search
Results 1-10 of 65
Effects of graphene oxide nanosheets in the polychaete Hediste diversicolor: Behavioural, physiological and biochemical responses
2022
Pires, Adília | Figueira, Etelvina | Silva, M.S.S. | Sá, Carina | Marques, Paula A.A.P.
Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources – soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.
Show more [+] Less [-]Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks
2020
Li, Jia | Song, Yang | Cai, Yongbing
Microplastics with extremely high abundances are universally detected in marine and terrestrial systems. Microplastic pollution in the aquatic environment, especially in ocean, has become a hot topic and raised global attention. However, microplastics in soils has been largely overlooked. In this paper, the analytical methods, occurrence, transport, and potential ecological risks of microplastics in soil environments have been reviewed. Although several analytical methods have been established, a universal, efficient, faster, and low-cost analytical method is still not available. The absence of a suitable analytical method is one of the biggest obstacles to study microplastics in soils. Current data on abundance and distribution of microplastics in soils are still limited, and results obtained from different studies differ significantly. Once entering into surface soil, microplastics can migrate to deep soil through different processes, e.g. leaching, bioturbation, and farming activities. Presence of microplastics with high abundance in soils can alter fundamental properties of soils. But current conclusions on microplastics on soil organisms are still conflicting. Overall, research on microplastics pollution in soils is still in its infancy and there are gaps in the knowledge of microplastics pollution in soil environments. Many questions such as pollution level, ecological risks, transport behaviors and the control mechanisms are still unclear, which needs further systematical study.
Show more [+] Less [-]Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes
2020
Weber, Collin Joel | Opp, Christian
Plastic, and especially microplastic, contamination of soils has become a novel research field. After the detection of microplastics in soils, spatial distribution and dynamics are still unknown. However, the potential risks associated with plastic particles in soils cannot be sufficiently assessed without knowledge about the spatial distribution of these anthropogenic materials. Based on a spatial research approach, including soil surveys, this study quantified the mesoplastic (MEP, > 5.0 mm) and coarse microplastics (CMP, 2.0–5.0 mm) content of twelve floodplain soils. At four transects in the catchment area of the Lahn river (Germany), soils down to a depth of 2 m were examined for plastic content for the first time. MEP and CMP were detected through visual examination after sample preprocessing and ATR-FTIR analyses. Average MEP and CMP concentrations range between 2.06 kg⁻¹ (±1.55 kg⁻¹) and 1.88 kg⁻¹ (±1.49 kg⁻¹) with maximal values of 5.37 MEP kg⁻¹ to 8.59 CMP kg⁻¹. Plastic particles are heterogeneously distributed in samples. Both plastic size classes occur more frequently in topsoils than in soil layers deeper than 30 cm. The maximal depth of CMP occurrence lies between 75 and 100 cm. Most common CMP polymer type was PE-LD, followed by PP and PA. MEP and CMP particles occur frequently at near channel sides and more often on riparian strips or grassland than on farmland. Vertical distribution of CMP indicates anthropogenic relocation in topsoils and additional deep displacement through natural processes like preferential flow paths or bioturbation. By comparing sedimentation rates of the river with the maximum age of plastic particles, sedimentation as a deposition process of plastic in floodplains becomes probable. From our findings, it can be concluded that an overall widespread but spatial heterogenous contamination occurs in floodplain soils. Additionally, a complex plastic source pattern seems to appear in floodplain areas.
Show more [+] Less [-]Bioturbation of Ag2S-NPs in soil columns by earthworms
2019
Baccaro, Marta | Harrison, Samuel | van den Berg, Hans | Sloot, Laura | Hermans, Davy | Cornelis, Geert | van Gestel, Cornelis A.M. | Brink, Nico W. van den
Sewage sludge contains Ag₂S-NPs causing NP exposure of soil fauna when sludge is applied as soil amendment. Earthworm bioturbation is an important process affecting many soil functions. Bioturbation may be affected by the presence of Ag₂S-NPs, but the earthworm activity itself may also influence the displacement of these NPs that otherwise show little transport in the soil. The aim of this study was to determine effects of Ag₂S-NPs on earthworm bioturbation and effect of this bioturbation on the vertical distribution of Ag₂S-NPs. Columns (12 cm) of a sandy loamy soil with and without Lumbricus rubellus were prepared with and without 10 mg Ag kg⁻¹, applied as Ag₂S-NPs in the top 2 cm of the soil, while artificial rainwater was applied at ∼1.2 mm day⁻¹. The soil columns were sampled at three depths weekly for 28 days and leachate collected from the bottom. Total Ag measurements showed more displacement of Ag to deeper soil layers in the columns with earthworms. The application of rain only did not significantly affect Ag transport in the soil. No Ag was detected in column leachates. X-ray tomography showed that changes in macro porosity and pore size distribution as a result of bioturbation were not different between columns with and without Ag₂S-NPs. Earthworm activity was therefore not affected by Ag₂S-NPs at the used exposure concentration. Ag concentrations along the columns and the earthworm density allowed the calculation of the bioturbation rate. The effect on the Ag transport in the soil shows that earthworm burrowing activity is a relevant process that must be taken into account when studying the fate of nanoparticles in soils.
Show more [+] Less [-]Bioturbation effects on metal release from contaminated sediments are metal-dependent
2019
Xie, Minwei | Simpson, Stuart L. | Wang, Wen-Xiong
Metal flux measurements inform the mobility, potential bioavailability and risk of toxicity for metals in contaminated sediments and therefore is an important approach for sediment quality assessment. The binding and release of metals that contribute to the net flux is strongly influenced by the presence and behaviors of benthic organisms. Here we studied the effects of bioturbation on the mobility and efflux of metals from multi-metal contaminated sediments that inhabited by oligochaete worms or both worms and bivalves. Presence of bivalves enhanced the release of Mn, Co, Ni and Zn but not for copper and chromium, which is likely due to the high affinities of copper and chromium for the solid phase. Metals in the overlying water were primarily associated with fractions smaller than 10 kDa, and the fractionation of all metals were not affected by the presence of the bivalve. Metal fluxes attributed to different processes were also distinguished, and the bioturbation induced effluxes were substantially higher than the diffusive effluxes. Temporal variabilities in the total net effluxes of Mn, Co, Ni and Zn were also observed and were attributed to the biological activities of the bivalves. Overall, the present study demonstrated that the response of different metals to the same bioturbation behavior was different, resulting in distinct mobility and fate of the metal contaminants.
Show more [+] Less [-]In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants
2017
Mustajärvi, Lukas | Eek, Espen | Cornelissen, Gerard | Eriksson-Wiklund, Ann-Kristin | Undeman, Emma | Sobek, Anna
Contaminated sediment can release hydrophobic organic contaminants (HOCs) and thereby act as a secondary source of primarily legacy hazardous substances to the water column. There is therefore a need for assessments of the release of HOCs from contaminated sediment for prioritization of management actions. In situ assessment of HOC sediment-to-water flux is currently done with (closed) benthic flux chambers, which have a sampling time exceeding one month. During this time, the water inside the chamber is depleted of oxygen and the effect of bioturbation on the sediment-to-water release of HOCs is largely ignored. Here we present a novel benthic flux chamber, which measures sediment-to-water flux of legacy HOCs within days, and includes the effect of bioturbation since ambient oxygen levels inside the chamber are maintained by continuous pumping of water through the chamber. This chamber design allows for sediment-to-water flux measurements under more natural conditions. The chamber design was tested in a contaminated Baltic Sea bay. Measured fluxes were 62–2300 ng m⁻² d⁻¹ for individual polycyclic aromatic hydrocarbons (PAHs), and 5.5–150 ng m⁻² d⁻¹ for polychlorinated biphenyls (PCBs). These fluxes were 3–23 times (PAHs) and 12–74 times (PCBs) higher than fluxes measured with closed benthic chambers deployed in parallel at the same location. We hypothesize that the observed difference in HOC flux between the two chamber designs are partly an effect of bioturbation. This hypothesized effect of bioturbation was in accordance with literature data from experimental studies.
Show more [+] Less [-]Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae)
2016
Colombo, Valentina | Pettigrove, Vincent J. | Hoffmann, Ary A. | Golding, Lisa A.
Classical laboratory-based single-species sediment bioassays do not account for modifications to toxicity from bioturbation by benthic organisms which may impact predictions of contaminated sediment risk to biota in the field. This study aims to determine the effects of bioturbation on the toxicity of zinc measured in a standard laboratory bioassay conducted with chironomid larvae (Chironomus tepperi). The epi-benthic chironomid larvae were exposed to two different levels of sediment contamination (1600 and 1980 mg/kg of dry weight zinc) in the presence or absence of annelid worms (Lumbriculus variegatus) which are known to be tolerant to metal and to have a large impact on sediment properties through bioturbation.Chironomids had 5–6x higher survival in the presence of L. variegatus which shows that bioturbation had a beneficial effect on the chironomid larvae. Chemical analyses showed that bioturbation induced a flux of zinc from the pore water into the water column, thereby reducing the bioavailability of zinc in pore water to the chironomid larvae. This also suggested that pore water was the major exposure path for the chironomids to metals in sediment. During the study, annelid worms (Oligochaetes) produced a thin layer of faecal pellets at the sediment surface, a process known to: (i) create additional adsorption sites for zinc, thus reducing its availability, (ii) increase the microbial abundance that in turn could represent an additional food source for opportunistic C. tepperi larvae, and (iii) modify the microbial community’s structure and alter the biogeochemical processes it governs thus indirectly impact zinc toxicity.This study represents a contribution in recognising bioturbating organisms as “ecological engineers” as they directly and indirectly influence metal bioavailability and impact other sediment-inhabiting species. This is significant and should be considered in risk assessment of zinc levels (and other metals) in contaminated sediment when extrapolating from laboratory studies to the field.
Show more [+] Less [-]The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment
2016
Remaili, Timothy M. | Simpson, Stuart L. | Amato, Elvio D. | Spadaro, David A. | Jarolimek, Chad V. | Jolley, Dianne F.
Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53–100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment.
Show more [+] Less [-]Iron-coupled inactivation of phosphorus in sediments by macrozoobenthos (chironomid larvae) bioturbation: Evidences from high-resolution dynamic measurements
2015
Chen, Musong | Ding, Shiming | Liu, Ling | Xu, Di | Han, Chao | Zhang, Chaosheng
The effects of chironomid larvae bioturbation on the lability of phosphorus (P) in sediments were investigated through sediment incubation for 140 days. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were applied to obtain soluble and labile P/Fe profiles at a millimeter resolution, respectively. The larvae bioturbation decreased concentrations of soluble/labile P and Fe by up to over half of the control at the sediment depths of influence up to 70 and 90 mm respectively. These effects continued over 116 days and disappeared on the 140th days due to eclosion of chironomid larvae. Labile P was highly correlated with labile Fe, while a weak correlation was observed between soluble P and soluble Fe. It was concluded that Fe(II) oxidation and its enhanced adsorption were the major mechanisms responsible for the decreases of soluble and labile P.
Show more [+] Less [-]Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)
2013
Leveque, Thibaut | Capowiez, Yvan | Schreck, Eva | Mazzia, Christophe | Auffan, Mélanie | Foucault, Yann | Austruy, Annabelle | Dumat, Camille
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris).The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation.
Show more [+] Less [-]