Refine search
Results 1-10 of 53
Soil amendments with ZnSO4 or MnSO4 are effective at reducing Cd accumulation in rice grain: An application of the voltaic cell principle
2022
Huang, Hui | Tang, Zhi-Xian | Qi, Hong-Yuan | Ren, Xiao-Tong | Zhao, Fang-Jie | Wang, Peng
Cadmium (Cd) contamination in paddy soil often results in elevated Cd concentrations in rice grain, which is a serious concern threatening food safety. Most of the Cd accumulated in rice grain is derived from its remobilization in paddy soil during the grain filling period when paddy water is drained. We have previously shown that the voltaic cell effect controls the oxidative release of cadmium sulfide (CdS) during the drainage period. Metal sulfides with lower electrochemical potentials than CdS can suppress the oxidation of CdS. In the present study, we tested whether amendments of ZnSO₄ or MnSO₄ could enhance the suppressive voltaic effect on Cd release and subsequent accumulation in rice grain. The one-time addition of ZnSO₄ (75 kg/ha Zn) decreased CaCl₂-extractable Cd concentrations in soils by 32–64% in pot experiments and by 16–30% in field trials during the drainage period. Consequently, Cd concentrations in brown rice were reduced by 74–87% and 60–72% in pot experiments and field trials, respectively. Importantly, this effect persisted in the second year without further addition. The amendment of MnSO₄ had similar effects in decreasing soil extractable Cd and Cd concentrations in brown rice. These effects were not attributed to the addition of sulfate. A single application of such doses of ZnSO₄ or MnSO₄ (e.g. 75–150 kg/ha Zn or Mn) only caused a marginal increase in soil Zn or Mn concentrations and had no significant impact on grain yield. Taken together, amendments of ZnSO₄ and/or MnSO₄ (at the rate of 75–150 kg/ha Zn and or Mn) formed a protective voltaic cell partner against the oxidative dissolution of CdS and thus were highly effective in reducing Cd accumulation in rice grain. This work provides a simple but effective method to decrease soil Cd availability during soil drainage and mitigate Cd accumulation in rice to ensure food safety.
Show more [+] Less [-]Effects of sulfur application on cadmium accumulation in brown rice under wheat-rice rotation
2021
Huang, Lijuan | Hansen, Hans Chr Bruun | Yang, Xiaosong | Mu, Jing | Xie, Zijian | Li, Songyan | Wu, Guangmei | Hu, Zhengyi
We investigated how sulfur (S) application prior to wheat cultivation under wheat-rice rotation influences the uptake of cadmium (Cd) in rice grown in low- and high-Cd soils. A pot experiment was conducted with four S levels (0, 30, 60, 120 mg S kg⁻¹) and two Cd rates (low and high, 0.35 and 10.35 mg Cd kg⁻¹) supplied to wheat. Part of the wheat straw was returned to the soil before planting rice, which was cultivated for 132 days. To explore the key mechanisms by which S application controlled Cd accumulation in brown rice, (1) soil pore water at the key growth stages was sampled, and dissolved Cd and S species concentrations were determined; (2) rice plant tissues (including iron plaque on the root surface) were sampled at maturity for Cd and S analysis. With increasing S level, Cd accumulation in brown rice peaked at 60 mg S kg⁻¹, irrespective of soil Cd levels. For high-Cd soils, concentrations of Cd in brown rice increased by 57%, 228%, and 100% at 30, 60, and 120 mg S kg⁻¹, respectively, compared with no S treatment. The increase in brown rice Cd by low S levels (0–60 mg kg⁻¹) could be attributed to (1) the S-induced increase in soil pore water sulfate increasing the Cd influx into rice roots and (2) the S-induced increase in leaf S promoting Cd translocation into brown rice. However, brown rice Cd decreased at 120 mg S kg⁻¹ due to (1) low Cd solubility at 120 mg S kg⁻¹ and (2) root and leaf S uptake, which inhibited Cd uptake. Sulfur application to wheat crop increased the risk of Cd accumulation in brown rice. Thus, applying S-containing fertilizers to Cd-contaminated paddy soils is not recommended.
Show more [+] Less [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
Show more [+] Less [-]Determining and mapping the spatial mismatch between soil and rice cadmium (Cd) pollution based on a decision tree model
2020
Wang, Yuanmin | Wu, Shaohua | Yan, Daohao | Li, Fufu | Chengcheng, Wang | Min, Cheng | Wenyu, Sun
Environmental complexity leads to differences in the spatial distribution of heavy metal pollution in soil and rice. Such spatial differences will seriously affect the safety of planted rice and can impact regional management and control. How to scientifically reveal these spatial differences is an urgent problem. In this study, the spatial mismatch relationship between Cd pollution in soil and rice grains (brown rice) was first explored by the interpolation method. To further reveal the causes of these, the specific recognition rules of the spatial relationship of Cd pollution were extracted based on a decision tree model, and the results were mapped. The results revealed a spatial mismatch in Cd pollution between the soil and rice grains in the study area, and the main results are as follows: (i) slight soil pollution and safe rice accounted for 68.88% of the area; (ii) slight soil pollution and serious rice pollution accounted for 13.39% of the area and (iii) safe soil and serious rice pollution accounted for 11.63% of the area. In addition, 11 recognition rules of Cd spatial pollution relationship between soil and rice were proposed, and the main environmental factors were determined: SOM (soil organic matter), Dis-residence (distance from residential area), soil pH and LAI (leaf area index). The average accuracy of rule recognition was 75.90%. The study reveals the spatial mismatch of heavy metal pollution in soil and crops, providing decision-making references for the spatial accurate identification and targeted prevention of heavy metal pollution spaces.
Show more [+] Less [-]Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China
2013
Li B., | Shi, J.B. | Wang, X. | Meng, M. | Huang, L. | Qi, X.L. | He, B. | Ye, Z.H.
Many paddy fields have been contaminated by mercury (Hg) in mining areas of China. In this study, twenty-six rice cultivars and three Hg contaminated paddy fields in different geographic regions were selected for field trials and aimed to investigate the variations and similarities in total Hg (THg) and methylmercury (MeHg) accumulations in brown rice (seeds) across sites. Our results revealed widescale cultivar variation in THg (13–52 ng g−1 at Wanshan) and MeHg (3.5–23 ng g−1) accumulation and %MeHg (17.7–89%) in seeds. The ability to translocate is an important factor in the levels of THg and MeHg in seed. Cultivar tended to stability in THg accumulation across sites. Some cultivars accumulated lower concentrations of both THg and MeHg in seeds at fields seriously contaminated by Hg. Present results suggest that appropriate cultivar selection is a possible way to reduce THg and MeHg accumulation in seeds of rice grown in Hg-contaminated regions.
Show more [+] Less [-]Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies
2011
Rothenberg, Sarah E. | Feng, Xinbin | Dong, Bin | Shang, Lihai | Yin, Runsheng | Yuan, Xiaobo
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3±1.6ng/g; flooded: 110±9.2ng/g) and MeHg (water-saving 1.3±0.56ng/g; flooded: 12±2.4ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r²=0.97, MeHg: r²=0.87, p<0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p<0.05), while MeHg content was similar (p>0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II).
Show more [+] Less [-]Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China
2022
Sun, Qian | Qian, Zhisong | Liu, Hao | Zhang, Yongkang | Yi, Xun'e | Kong, Ren | Cheng, Shiyang | Man, Jianguo | Zheng, Lu | Huang, Junbin | Su, Guanyong | Letcher, Robert J. | Giesy, John P. | Liu, Chunsheng
Ustiloxin A (UA) and ustiloxin B (UB), two major mycotoxins produced by the pathogen of rice false smut (RFS) during rice cultivation, have attracted increasing attentions due to their potential health risks. However, limited data are available about their occurrence and fate in paddy fields and contamination profiles in rice. In this study, a field study was performed to investigate the occurrence and translocation of UA and UB in RFS-occurred paddies. For the first time to our knowledge, we reported a ubiquitous occurrence of the two ustiloxins in the paddy water (range: 0.01–3.46 μg/L for UA and <0.02–1.15 μg/L for UB) and brown rice (range: 0.09–154.08 μg/kg for UA and <0.09–23.57 μg/kg for UB). A significant positive correlation was observed between ustiloxin levels in paddy water and brown rice (rₛ = 0.48–0.79, p < 0.01). The occurrence of ustiloxin uptake in water-rice system was also evidenced by the rice exposure experiment, suggesting paddy water might be an important source for ustiloxin accumulation in rice. These results suggested that the contamination of ustiloxins in rice might occur widely, which was supported by the significantly high detection frequencies of UA (96.6%) and UB (62.4%) in polished rice (149 samples) from Hubei Province, China. The total concentrations of ustiloxins in the polished rice samples collected from Hubei Province ranged from <20.7 ng/kg (LOD) to 55.1 μg/kg (dry weight). Further studies are needed to evaluate the potential risks of ustiloxin exposure in the environment and humans.
Show more [+] Less [-]A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops
2022
Cao, Hong Wei | Zhao, Ya Ning | Liu, Xue Song | Rono, Justice Kipkorir | Yang, Zhi Min
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76–34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36–35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.
Show more [+] Less [-]Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming
2021
Yao, Aijun | Liu, Ying | Sitong, | Liu, Chong | Tang, Yetao | Wang, Shizhong | Huang, Xiongfei | Qiu, Rongliang
Liming is a safe and effective remediation practice for Cd contaminated acid paddy soil. The fate of Cd can also be strongly influenced by redox chemistry of sulfur. But it is unclear if, to what extent and how the combination of liming and sulfur mediation could further control Cd uptake by paddy rice. A rice cultivation pot experiment was conducted to evaluate the impact of different sulfur forms (S⁰ and SO₄²⁻ in K₂SO₄) on the solubility, uptake and accumulation of Cd in the soil-paddy rice system and how liming and reducing organic carbon mediate the process. Results showed that under neutral soil circumstances achieved by liming, co-application of K₂SO₄ and glucose significantly reduced brown rice Cd by 33%, compared to liming alone. They made it more readily for Cd²⁺ to be precipitated into CdS/CdS₂ or co-precipitate with newly formed FeS/FeS₂/iron oxides. The higher pH balancing capability of K₂SO₄ as well as liming kept the newly formed sulfide or iron containing minerals negatively charged to be more prone to adsorb Cd²⁺, that kept the porewater Cd²⁺ the lowest among all the treatments. Individual K₂SO₄ showed significant promoting effect on soil Cd solubility due to SO₄²⁻ chelation effect. Furthermore, K₂SO₄ had much weaker inhibiting effect on Cd translocation from root to grain, it showed no significant attenuating effect on brown rice Cd. S⁰ containing treatments displayed weaker or no attenuating effect on brown rice Cd due to its strong soil acidification effect. On the basis of liming, organic carbon induced sulfur (K₂SO₄) mediation showed great application potential for safe production on large areas of acid paddy soil contaminated by Cd.
Show more [+] Less [-]Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer
2020
Deng, Xiao | Chen, Yixuan | Yang, Yang | Lü, Lei | Yuan, Xiaoqing | Zeng, Hongyuan | Zeng, Qingru
Rice is a main source of dietary cadmium (Cd), thus, how to reduce the Cd concentration in brown rice has received extensive attention worldwide. In three acidic paddy soils slightly to moderately contaminated with Cd, a series of field experiments were conducted to evaluate the effects of different proportions of nitrogen-phosphorus-potassium (N-P-K) fertilizer (urea, calcium magnesium phosphate, and potassium carbonate, respectively) alone or coupled with a topdressing of manganese (Mn) fertilizer at the tillering stage on reducing Cd bioavailability in soil and uptake in rice. The rational application of N-P-K fertilizer not only provided the basic nutrients to promote the normal growth of rice but also increased soil pH and thereby reduced the Cd bioavailability in soil. The Mg(NO₃)₂-extracted Cd concentrations in the three soils were reduced by 26.46–56.53%, while TCLP-extracted Cd were reduced by 19.87–45.41%, with little influence on soil cation exchange capacity (CEC) and organic matter (OM). The application of Mn fertilizer at the tillering stage increased Mn and Cd sequestration in the iron plaque. The Mn content in iron plaque increased by 15.71–58.67% and a significant positive correlation between Cd and Mn was observed at the three sites. Collectively, this combined method of fertilization significantly reduced Cd accumulation in rice tissues, the Cd concentrations in roots of treated plants decreased by 11.18–37.78%, whereas the concentrations in straw decreased by 13.16–41.03%. Particularly to brown rice, in which accumulation decreased by 25.19–44.70%, 37.35–47.84%, and 38.00–60.88% in three typical paddy fields, but no significant effect was observed for the Cd translocation factors (TF) among rice tissues. Thus, the basal application of combined urea and alkaline inorganic fertilizers followed by topdressing of Mn fertilizer may be a promising and cost-effective tactics for the remediation of Cd-contaminated paddy soils.
Show more [+] Less [-]