Refine search
Results 1-10 of 30
Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes
2022
Arias, Silvana | Estrada, Verónica | Ortiz, Isabel C. | Molina, Francisco J. | Agudelo, John R.
We investigated the biological response of soluble organic fraction (SOF) and water-soluble fraction (WSF) extracted from particulate matter (PM) emitted by an automotive diesel engine operating in a representative urban driving condition. The engine was fueled with ultra-low sulfur diesel (ULSD), and its binary blends by volume with 13% of butanol (Bu13), and with hydrotreated vegetable oil (HVO) at 13% (HVO13) and 20% (HVO20). Cytotoxicity, genotoxicity, oxidative DNA damage and ecotoxicity tests were carried out, and 16 polycyclic aromatic hydrocarbons (PAH) expressed as tbenzo(a)pyrene total toxicity equivalent (BaP-TEQ) were also analyzed. The Hepatocarcinoma epithelial cell line (HepG2) was exposed to SOF for 24 h and analyzed using comet assay, with the inclusion of formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (Endo III) to recognize oxidized DNA bases. The WSF was evaluated through acute ecotoxicity tests with the aquatic microcrustacean Daphnia pulex (D. Pulex). Results showed that there was no cytotoxic activity for all tested SOF concentrations. Genotoxic responses by all the SOF samples were at same level, except for the HVO13 which was weaker in the absence of the enzymes. The addition of the FPG and Endo III enzymes resulted in a significant increase in the comet tail, indicating that the DNA damage from SOF for all tested fuel blends involves oxidative damage including a higher level of oxidized purines for ULSD and Bu13 in comparison with HVO blends, but the oxidized pyrimidines for HVO blends were slightly higher compared to Bu13. The WSF did not show acute ecotoxicity for any of the fuels. Unlike other samples, Bu13-derived particles significantly increase the BaP-TEQ. The contribution to the genotoxic activity and oxidative DNA from SOF was not correlated to BaP-TEQ, which means that the biological activity of PM might be affected also by other toxic compounds present in particulate phase.
Show more [+] Less [-]Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India)
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
Show more [+] Less [-]Biomass utilization and production of biofuels from carbon neutral materials
2021
Srivastava, Rajesh K. | Shetti, Nagaraj P. | Reddy, Kakarla Raghava | Kwon, Eilhann E. | Nadagouda, Mallikarjuna N. | Aminabhavi, Tejraj M.
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world’s energy need by producing least amount of toxic gases (reduction up to 20–70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Show more [+] Less [-]Dibutyl phthalate contamination accelerates the uptake and metabolism of sugars by microbes in black soil
2020
Chen, Wenjing | Wang, Zhigang | Xu, Weihui | Tian, Renmao | Zeng, Jin
Dibutyl phthalate (DBP) is widely used as plasticizer and has been detected in the environment, posing a threat to animal health. However, the effects of DBP on agricultural microbiomes are not known. In this study, DBP levels in black soil were evaluated, and the impact of DBP contamination on the uptake and metabolism of sugars in microbes was assessed by glucose absorption tests, metaproteomics, metabolomics, enzyme activity assays and computational simulation analysis. The results indicated that DBP contamination accelerated glucose consumption and upregulated the expression of porins and periplasmic monosaccharide ATP-binding cassette (ABC) transporter solute-binding proteins (SBPs). DBP and its metabolic intermediates (carboxymuconate and butanol) may form a stable complex with sugar transporters and enhance the rigidity and stability of these proteins. Sugar metabolism resulting in the generation of ATP and reducing agent (NADPH), as well as the expression of some key enzymes (dehydrogenases) were also upregulated by DBP treatment. Moreover, a diverse bacterial community appears to utilize sugar, suggesting that there are widespread effects of DBP contamination on soil microbial ecosystems. The results of this study provide a theoretical basis for investigating the toxicological effects of DBP on microbes in black soil.
Show more [+] Less [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
Show more [+] Less [-]Systematical exploration of the common solvent toxicity at whole organism level by behavioral phenomics in adult zebrafish
2020
Audira, Gilbert | Siregar, Petrus | Chen, Jung-Ren | Lai, Yu-Heng | Huang, Jong-Chin | Hsiao, Chung-Der
Common solvents are frequently used as carriers to dissolve chemicals with a hydrophobic property that is extensively applied in the industrial and biomedical fields. In this study, we aimed to systematically study the sub-chronic effect of ten common solvents at low concentration exposure in adult zebrafish and perform neurobehavioral assessments for mechanistic exploration. After exposed to ten common solvents, including methanol, ethanol (EtOH), dimethyl sulfoxide (DMSO), isopropanol, acetone, polyethylene glycol-400 (PEG-400), glycerol, butanol, pentane, and tetrahydrofuran for continuous 10 day at 0.1% concentration level, adult zebrafish were subjected to perform a serial of behavioral tests, such as novel tank, mirror biting, predator avoidance, social interaction and shoaling. Later, 20 behavioral endpoints obtained from these five tests were transformed into a scoring matrix. Principal component analysis (PCA) and hierarchy clustering were performed to evaluate and compare the zebrafish behavior profiling. By using this phenomic approach, we were able to systematically evaluate the toxicity of the common solvents in zebrafish at a neurobehavioral level for the first time and found each common solvent-induced unique behavioral alteration to produce fingerprint-like patterns in hierarchy clustering and heatmap analysis. Among all tested common solvents, acetone and PEG-400 displayed better biocompatibility and less toxicity since they triggered less behavioral and biochemical alterations while methanol and DMSO caused severe behavior alterations in zebrafish after chronic exposure of these solvents. We conclude the behavioral phenomic approach conducted in this study providing a powerful tool to a systematical exploration of the common solvent toxicity at the whole organism level.
Show more [+] Less [-]Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils
2011
Gomez-Eyles, Jose L. | Collins, Chris D. | Hodson, Mark E.
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability.
Show more [+] Less [-]Removal of phenol from wastewater by high-gravity intensified heterogeneous catalytic ozonation with activated carbon
2022
Zhang, Jingwen | Shao, Shengjuan | Ding, Xin | Li, Zhixing | Jing, Jiaxin | Jiao, Weizhou | Liu, Youzhi
In this study, the high-gravity technique is used to intensify the heterogeneous catalytic ozonation with activated carbon (AC) as the catalyst for removal of phenol from wastewater in a rotating packed bed (RPB), and the effects of high-gravity factor, inlet O₃ concentration, liquid–gas ratio, and initial pH on the degradation and mineralization of phenol at room temperature are investigated. It is revealed that the degradation rate of phenol reaches 100% at 10 min and the removal rate of total organic carbon (TOC) reaches 91% at 40 min under the conditions of high-gravity factor β = 40, inlet O₃ concentration = 90 mg·L⁻¹, liquid flow rate = 80 L·h⁻¹, and initial pH = 11. Compared with the bubbling reactor (BR)/O₃/AC and RPB/O₃ systems, the mineralization rate of phenol by the RPB/O₃/AC system is increased by 24.78% and 34.77%, respectively. Free radical quenching experiments are performed using tertiary butanol (TBA) and benzoquinone (BQ) as scavengers of ·OH and O₂⁻, respectively. It is shown that the degradation and mineralization of phenol are attributed to the direct ozonation and the indirect oxidation by ·OH generated from the decomposition of O₃ adsorbed on AC surface, respectively. ·OH and O₂·⁻ are also detected by electron paramagnetic resonance (EPR). Thus, it is concluded that AC-catalyzed ozonation and high-gravity technique have a synergistic effect on ·OH initiation, which in turn can significantly improve the degradation and mineralization of organic wastewater.
Show more [+] Less [-]Sugarcane valorization: selection of process routes based on sustainability index
2022
Increasing awareness about sustainability has compelled the recent researchers to explore different methods for evaluation. Conventionally the sustainability of a process was majorly dependent on the economics feasibility. Recently need of incorporation of environmental and social concerns in overall sustainability assessment has been realized. Authors in their prior work has published a framework for performing sustainability assessment of biomass processing enterprises. The present work is on selection of sugarcane valorization pathways based on the sustainability index using the same framework. Six alternative routes are compared based on their economic, environment and social criteria. Life cycle assessment of each process is performed as per ISO 14040/44 to evaluate the environmental criteria. Integrated method of value function (MIVES) is used for consolidation of different indicators and criteria. Amongst the process alternatives considered for assessment, 1G2G ethanol route is observed to have highest sustainability index (0.864) owing to relatively lower environmental impact whereas first generation butanol production route (1GRS) had the least sustainability index of 0.090 on account of decreased yield and less products. Sensitivity analysis performed on the model showed no significant change in the ranking of the alternatives.
Show more [+] Less [-]Onosma bracteata Wall. induces G0/G1 arrest and apoptosis in MG-63 human osteosarcoma cells via ROS generation and AKT/GSK3β/cyclin E pathway
2021
Kumar, Ajay | Kaur, Sandeep | Pandit, Kritika | Kaur, Varinder | Ṭhākara, Śarada | Kaur, Satwinderjeet
Onosma bracteata Wall. (Boraginaceae), commonly known as “gaozaban” is a highly valuable medicinal herb, useful in the treatment of body swellings, abdominal pain, eye-related problems, fever, and urinary calculi. The present study was performed to investigate the antioxidant properties of extract/fractions, viz. ethanol (Obeth) extract, hexane (Obhex) fraction, chloroform (Obcl) fraction, ethyl acetate (Obea) fraction, butanol (Obbu) fraction, and aqueous (Obaq) fraction isolated from O. bracteata. Obea fraction showed stronger free radical quenching ability in various antioxidant assays, as compared to the other fractions. Obea fraction with effective free radical-scavenging properties was further evaluated for the antiproliferative activity against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay. Obea fraction showed strong cytotoxicity with GI₅₀ value of 88.56, 101.61, and 112.7 μg/ml towards MG-63, IMR-32, and A549 cells respectively. Mechanistic studies revealed that Obea fraction in osteosarcoma MG-63 cells increased reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. In the presence of Obea, the cells were found to be arrested in the G₀/G₁ phase in a dose-dependent manner which is also confirmed by the enhancement in the early apoptotic cell population in flow cytometer analysis. Western blotting demonstrated the decrease in expression of p-NFκB, COX-2, p-Akt, and Bcl-xL, whereas upregulation was observed in the expression of GSK-3β, p53, caspase-3, and caspase-9 proteins. RT-qPCR studies revealed downregulation of Bcl-2, cyclin E, CDK2, and mortalin gene expression and upregulation in the expression of p53 genes. The antioxidant and cytotoxic potential of Obea was attributed to the presence of catechin, kaempferol, onosmin A, and epicatechin, as revealed by HPLC analysis. This is the first report regarding the antiproliferative potential of O. bracteata against osteosarcoma.
Show more [+] Less [-]