Refine search
Results 1-10 of 124
An assessment of contamination fingerprinting techniques for determining the impact of domestic wastewater treatment systems on private well supplies
2021
Fennell, Christopher | Misstear, Bruce | O’Connell, David | Dubber, Donata | Behan, Patrice | Danaher, Martin | Moloney, Mary | Gill, Laurence
Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated.
Show more [+] Less [-]Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance
2020
Li, Shulan | Wen, Jing | He, Bingshu | Wang, Jun | Hu, Xianmin | Liu, Juan
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Show more [+] Less [-]Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river
2020
Yuan, Xiao | Hu, Jiatang | Li, Shiyu | Yu, Mianzi
The identification and quantification of pharmaceutical and personal care products (PPCPs) in aquatic ecosystems is critical to further studies and elucidation of their fate as well as the potential threats to aquatic ecology and human health. This study used mass balances to analyse the sources, transformation, and transport of PPCPs in rivers based on the population and consumption habits of residents, the removal level of sewage treatment, the persistence and partitioning mechanisms of PPCPs, hydrological conditions, and other natural factors. Our results suggested that in an urbanized river of Guangzhou City, China, the daily consumption of PPCPs was the main reason for the variety of species and concentrations of PPCPs. Through the determination of PPCPs in the river water samples and a central composite design (CCD) methodology, the dominant elimination mechanisms of caffeine and carbamazepine from river water were photolysis and biodegradation, but that of triclosan was sorption rather than biodegradation. The mass data of 3 PPCPs were estimated and corroborated using the measured data to evaluate the accuracy of the mass balance. Finally, caffeine, carbamazepine and triclosan discharged from the Shijing River into the Pearl River accounted for 97.81%, 99.52%, and 28.00%, respectively, of the total mass of these three compounds in the surface water of Shijing River. The results suggest that photolysis are the main process of natural attenuation for selected PPCPs in surface waters of river systems, and the transfer processes of PPCPs is mainly attributed to riverine advection. In addition, the low concentration of dissolved oxygen inhibited the degradation of PPCPs in the surface water of Shijing River.
Show more [+] Less [-]Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China
2019
Yang, Haohan | Lü, Guanghua | Yan, Zhenhua | Liu, Jianchao | Dong, Huike | Jiang, Runren | Zhou, Ranran | Zhang, Peng | Sun, Yu | Nkoom, Matthew
Water diversion projects have been continuously used to alleviate water quality issues that arise during urbanization. However, studies about whether it has possible effects on the status of pharmaceutical and personal care products (PPCPs) are limited. In this study, the occurrence trends and spatial-temporal distribution characteristics of 50 PPCPs were investigated in surface water, suspended particulate matter (SPM) and sediments in Nanjing urban rivers under the background of the water diversion project from the Yangtze River to the Qinhuai River. In the four field campaigns that were embarked on April to July 2018, a total of 40, 38 and 24 PPCPs were detected in surface water, SPM and sediments, respectively, with overall concentrations of 138–1990 ng/L, 3214–33701 ng/g and 12.1–109 ng/g dry weight (dw) among nine sampling sites. The excessive concentration of caffeine (20.6–905 ng/L) may be evidence of the direct discharge of untreated sewage and an obvious indicator of the overall concentrations of PPCPs. The PPCPs contamination levels in surface water were increased along with the direction of the water diversion in urban runoff, and decreased by 8–31% due to the increase in volume attributable to the water diversion. The distribution coefficients (Kd) of pollutants in the SPM-water phases (3.0–5.6 L/kg) were two orders of magnitude higher than those in the sediment-water phases (0.3–3.3 L/kg). And the positive correlations between their log Kow and SPM-water log Kd values indicated SPM was the important carrier determining the fate of organic UV filters. Furthermore, the results of ecological risk assessment demonstrated that although the increase in the volume of water caused by the water diversion reduced the overall ecological risks of PPCPs in urban rivers, the current contamination level still represents high risks to algae and fish.
Show more [+] Less [-]Metabolism of pharmaceutical and personal care products by carrot cell cultures
2016
Wu, Xiaoqin | Fu, Qiuguo | Gan, Jay
With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4–47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3–20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations.
Show more [+] Less [-]Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources
2015
Wang, Bin | Dai, Guohua | Deng, Shubo | Huang, Jun | Wang, Yujue | Yu, Gang
The environmental loads of pharmaceutical and personal care products (PPCPs) in Beijing were estimated from direct discharge of untreated wastewater and WWTP treated effluent. The annual environmental loads of 15 PPCP components ranged from 16.3 kg (propranolol) to 9.85 tons (caffeine). A fugacity model was developed to successfully estimate the PPCP pollution based on the estimated environmental load. The modeled results approximated the observed PPCP concentrations in Beijing. The untreated wastewater contributed significantly to PPCP pollution in Beijing, ranging from 46% (propranolol) to 99% (caffeine). The total environmental burden of target PPCPs ranged from 0.90 kg (propranolol) to 536 kg (caffeine). Water is the most important media for the fate of PPCPs. Monte Carlo-based concentration distributions of PPCPs are consistent with the observed results. The most important way to reduce the PPCP pollution is to both improve wastewater collection rate and adopt deep treatment technologies.
Show more [+] Less [-]Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland
2012
Zhang, Dong Qing | Gersberg, Richard M. | Zhu, Junfei | Hua, Tao | Jinadasa, K.B.S.N. | Tan, Soon Keat
This study evaluated the effect of continuous and batch feeding on the removal of 8 pharmaceuticals (carbamazepine, naproxen, diclofenac, ibuprofen, caffeine, salicylic acid, ketoprofen and clofibric acid) from synthetic wastewater in mesocosm-scale constructed wetlands (CWs). Both loading modes were operated at hydraulic application rates of 5.6 cm day⁻¹ and 2.8 cm day⁻¹. Except for carbamazepine, clofibric acid and naproxen, removal in CWs was significantly (p < 0.05) enhanced under the batch versus continuous mode. For all compounds tested except naproxen, values for first-order decay constants (k) for drain and fill operation were higher than that for the continuous mode of operation. Correlation between the distribution coefficient (log Dₒw) and removal efficiencies of pharmaceutical compounds in the CWs, showed that pharmaceutical removal efficiency was significantly (p < 0.1) and inversely correlated with log Dₒw value, but not with log Kₒw value.
Show more [+] Less [-]Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea
2010
Sim, Won-Jin | Lee, Ji-Woo | Oh, Jeong-Eun
We measured 25 pharmaceuticals in ten municipal wastewater treatment plants (WWTPs), one hospital WWTP and five rivers in Korea. In the municipal WWTP influents, acetaminophen, acetylsalicylic acid and caffeine showed relatively high concentrations. The occurrence of pharmaceuticals in the wastewater seems to be influenced by production and consumption of pharmaceuticals. The hospital WWTP influent showed higher total concentrations of pharmaceuticals than the municipal WWTPs, and caffeine, ciprofloxacin and acetaminophen were dominant. In the rivers, caffeine was dominant, and the distribution of pharmaceuticals was related to the inflow of the wastewater. In the municipal WWTPs, the concentrations of acetaminophen, caffeine, acetylsalicylic acid, ibuprofen and gemfibrozil decreased by over 99%. The decrease of these pharmaceuticals occurred mainly during the biological processes. In the physico-chemical processes, the decrease of pharmaceuticals was insignificant except for some cases. In the hospital WWTP, ciprofloxacin, acetylsalicylic acid, acetaminophen and carbamazepine showed the decrease rates of over 80%.
Show more [+] Less [-]Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children
2022
Tkalec, Žiga | Codling, Garry | Tratnik, Janja Snoj | Mazej, Darja | Klánová, Jana | Horvat, Milena | Kosjek, Tina
Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to predicted, unpredicted known and unknown chemicals. This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6–9 years. The children originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation products. Interestingly, several BoE showed location and time dependency. Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this vulnerable population.
Show more [+] Less [-]Biological, histological and immunohistochemical studies on the toxicity of spent coffee grounds and caffeine on the larvae of Aedes aegypti (Diptera: Culicidae)
2021
Miranda, Franciane Rosa | Fernandes, Kenner Morais | Bernardes, Rodrigo Cupertino | Martins, Gustavo Ferreira
The mosquito Aedes aegypti is a primary vector for major arboviruses, and its control is mainly based on the use of insecticides. Caffeine and spent coffee grounds (CG) are potential agents in controlling Ae. aegypti by reducing survival and blocking larval development. In this study, we analyzed the effects of treatment with common CG (CCG: with caffeine), decaffeinated CG (DCG: with low caffeine), and pure caffeine on the survival, behavior, and morphology of the midgut of Ae. aegypti under laboratory conditions. Third instar larvae (L3) were exposed to different concentrations of CCG, DCG, and caffeine. All compounds significantly affected larval survival, and sublethal concentrations reduced larval locomotor activity, delayed development, and reduced adult life span. Damage to the midgut of treated larvae included changes in epithelial morphology, increased number of peroxidase-positive cells (more abundant in DCG-treated larvae), and caspase 3-positive cells (more abundant in CCG-treated larvae), suggesting that the treatments triggered cell damage, leading to activation of cell death. In addition, the treatments reduced the FMRFamide-positive enteroendocrine cells and dividing cells compared to the control. CG and caffeine have larvicidal effects on Ae. aegypti that warrant field testing for their potential to control mosquitoes.
Show more [+] Less [-]