Refine search
Results 1-2 of 2
Behavior and toxic effects of Pb in a waterfowl model with oral exposure to Pb shots: Investigating Pb exposure in wild birds
2022
Sato, Hiroshi | Ishii, Chihiro | Nakayama, Shouta M.M. | Ichise, Takahiro | Saitō, Keisuke | Watanabe, Yukiko | Ogasawara, Kohei | Torimoto, Ryota | Kobayashi, Atsushi | Kimura, Kei | Johnson, Yuki N. (Yuki Nakamura) | Yamagishi, Junya | Ikenaka, Yoshinori | Ishizuka, Mayumi
Among wild birds, lead (Pb) exposure caused by ingestion of ammunition is a worldwide problem. We aimed to reveal the behavior and toxic effect of Pb caused by ingesting Pb shots in waterfowl. Four male, eight-week old Muscovy ducks (Cairina moschata) were given three Pb shots (approximately 240 mg in total) orally and then fed for 29 days after exposure, simulating a low-dose Pb exposure in wild waterfowl. During the breeding period, blood samples were collected 10 times, and fecal samples every day. Additionally, 22 fresh tissue and 6 bone samples were obtained from each duck through the dissection. Although there were no gross abnormalities, the maximum blood Pb concentration of each duck ranged from 0.6 to 3.7 mg/L, reaching a threshold concentration indicative of clinical symptoms (>0.5 mg/L). δ-aminolevulinic acid dehydratase declined one day after exposure and remained low throughout the feeding period. Hematocrit also tended to decrease, indicating signs of anemia. The highest Pb accumulation was observed in the bones, followed by the kidneys, intestinal tracts, and liver. High Pb accumulation in the bones, which are known to have a long Pb half-life, suggested that Pb would remain in the body and possibly affect bird health beyond 28 days after exposure. Gene expression analysis showed a significant increase in the expression of the toll-like receptor-3 gene, which is involved in virus discrimination in the liver, suggesting a disruption of the immune system. Microbiota analyses showed a correlation between the blood Pb concentration and the abundances of Lachnospiraceae and Ruminococcaceae, suggesting that Pb affects lipid metabolism. These results provide fundamental data on Pb exposure in wild birds and a new perspective on the damage such exposure causes.
Show more [+] Less [-]Molecular characterization of Toll-like receptor type-3 in mallard duck and its response to Newcastle disease virus infection
2021
Elfeil, Wael K. | Abouelmaatti, Reham R. | Talat, Shaimaa | Fawzy, Mohamed | Rady, Mohamed | Diab, Mohamed | Alkahtani, Saad | Sultan, Hesham | Sun, Changjiang | Lei, Liancheng | Han, Wenyu | Sedeik, Mahmoud | Abdel-Daim, Mohamed M.
Toll-like receptors (TLRs), type I transmembrane pattern recognition receptors (PRRs), are composed of the extracellular domain that is implicated in the recognition of microbial products and initiates the innate and adaptive immune response. Previous reports on TLRs in birds showed significant levels of inter- and intraspecific genetic variation. Little is known about the structure and function of the avian immune system, especially waterfowl species. This work aimed to identify and clone Anas platyrhynchos (mallard duck) TLR-3 (dTLR-3) and its expression level following challenge with velogenic Newcastle disease virus (NDV) as a model for waterfowl species. The mallard duck TLR-3 full-length cDNA sequence had been cloned, which consisted of 2457 nucleotides. The translated amino acid sequence showed identity degree as 97% with Muscovy duck, 95% with geese, 89% with helmeted guineafowls, 88% with the chickens TLR-3 gene, 82% with turkey TLR-3, and 79% with zebra finch, while it showed 54% with human one; the analysis data suggested that the new sequence is probably homologous to vertebrates’ TLR-3. The predicted protein encoded by the duck dTLR-3 mRNA sequence is composed of 819 amino acids. Analysis of the deduced amino acid sequence indicated that dTLR-3 has typical structural features and contains the main components of proteins in the TLR family. The dTLR-3 expressed in almost all examined tissues of mallard duck following quantitative real-time polymerase chain reaction (qPCR) analysis and using B-actin as a housekeeping gene. To check the functionality of the receptor and its role in viral infection, we evaluate the expression level in different tissues and its changes following NDV infection. The results showed significant (P < 0.05) upregulated in the brain at 24 h (1.84-fold), reached a peak at 48 h (4.82-fold), and recovered to normal levels at 72 h post-infection. These results indicate a complete and functional dTLR-3 that is orthologous to other vertebrate receptors with its potential role in early response against viral infection in mallard duck species.
Show more [+] Less [-]