Refine search
Results 1-10 of 28
Environmental opportunities and challenges of utilizing unactivated calcium peroxide to treat soils co-contaminated with mixed chlorinated organic compounds Full text
2021
Oba, Belay Tafa | Zheng, Xuehao | Aborisade, Moses Akintayo | Battamo, Ashenafi Yohannes | Kumar, Akash | Kavwenje, Sheila | Liu, Jiashu | Sun, Peizhe | Yang, Yongkui | Zhao, Lin
Calcium peroxide (CaO₂) has been proven to oxidize various organic pollutants when they exist as a single class of compounds. However, there is a lack of research on the potential of unactivated CaO₂ to treat mixed chlorinated organic pollutants in soils. This study examined the potential of CaO₂ in treating soils co-contaminated with p-dichlorobenzene (p-DCB) and p-chloromethane cresol (PCMC). The effects of CaO₂ dosage and treatment duration on the rate of degradation were investigated. Furthermore, the collateral effects of the treatment on treated soil characteristics were studied. The result showed that unactivated CaO₂ could oxidize mixed chlorinated organic compounds in wet soils. More than 69% of the pollutants in the wet soil were mineralized following 21 days of treatment with 3% (w/w) CaO₂. The hydroxyl radicals played a significant role in the degradation process among the other decomposition products of hydrogen peroxide. Following the oxidation process, the treated soil pH was increased due to the formation of calcium hydroxide. Soil organic matter, cation exchange capacity, soil organic carbon, total nitrogen, and certain soil enzyme activities of the treated soil were decreased. However, the collateral effects of the system on electrical conductivity, available phosphorus, and particle size distribution of the treated soil were not significant. Likewise, since no significant release of heavy metals was seen in the treated soil matrix, the likelihood of metal ions as co-pollutants after treatment was low. Therefore, CaO₂ can be a better alternative for treating industrial sites co-contaminated with chlorinated organic compounds.
Show more [+] Less [-]Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain) Full text
2020
Benavente, David | Pla, Concepcion | Valdes-Abellan, Javier | Cremades-Alted, Silvia
Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain) Full text
2020
Benavente, David | Pla, Concepcion | Valdes-Abellan, Javier | Cremades-Alted, Silvia
We investigate the use of hydrated lime and calcite waste marble powder as remediation treatments of contaminated jarosite-rich sediments from Portman Bay (SE, Spain), one of the most contaminated points in the Mediterranean coast by mining-metallurgical activities. We tested two commercial hydrated limes with different Ca(OH)₂ percentages (28 and 60% for Lime-1 and Lime-2 respectively) and two different waste marble powder, WMP, from the marble industry (60 and 96% of calcite for WMP-1 and WMP-2 respectively). Mixture and column experiments and modelling of geochemical reactions using PHREEQC were performed. Lime caused the precipitation of hematite, gypsum and calcite, whereas WMP treatments formed iron carbonates and hematite. The fraction of amorphous phases was mainly composed of iron oxides, hydroxides and oxyhydroxides that was notably higher in the lime treatment in comparison to the WMP treatment. The reactive surface area showed a positive trend with the amorphous phase concentration. Results highlighted the effectiveness of lime treatments, where Lime-2 showed a complete elimination of jarosite. Column experiments revealed a clear reduction of heavy metal concentration in the lixiviate for the treated sediments compared to the original sediments. Particularly, Lime-2 showed the highest reduction in the peak concentration of Fe, Mn, Zn and Cd. The studied treatments limited the stabilisation of Cr and Ni, whereas contrarily As increases in the treated sediment. PHREEQC calculations showed that the most concentrated heavy metals (Zn and Mn) are stabilized mainly by precipitation whereas Cu, Pb and Cd by a combination of precipitation and sorption processes. This chemical environment leads to the precipitation of stable iron phases, which sorb and co-precipitate considerable amounts of potentially toxic elements. Lime is significantly more effective than WMP, although it is recommended that the pH value of the mixture should remain below 9 due to the amphoteric behaviour of heavy metals.
Show more [+] Less [-]Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain) Full text
2020
Benavente, David | Pla, Concepción | Valdes-Abellan, Javier | Cremades-Alted, Silvia | Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente | Universidad de Alicante. Departamento de Ingeniería Civil | Petrología Aplicada | Ingeniería Hidráulica y Ambiental (IngHA)
We investigate the use of hydrated lime and calcite waste marble powder as remediation treatments of contaminated jarosite-rich sediments from Portman Bay (SE, Spain), one of the most contaminated points in the Mediterranean coast by mining-metallurgical activities. We tested two commercial hydrated limes with different Ca(OH)2 percentages (28 and 60% for Lime-1 and Lime-2 respectively) and two different waste marble powder, WMP, from the marble industry (60 and 96% of calcite for WMP-1 and WMP-2 respectively). Mixture and column experiments and modelling of geochemical reactions using PHREEQC were performed. Lime caused the precipitation of hematite, gypsum and calcite, whereas WMP treatments formed iron carbonates and hematite. The fraction of amorphous phases was mainly composed of iron oxides, hydroxides and oxyhydroxides that was notably higher in the lime treatment in comparison to the WMP treatment. The reactive surface area showed a positive trend with the amorphous phase concentration. Results highlighted the effectiveness of lime treatments, where Lime-2 showed a complete elimination of jarosite. Column experiments revealed a clear reduction of heavy metal concentration in the lixiviate for the treated sediments compared to the original sediments. Particularly, Lime-2 showed the highest reduction in the peak concentration of Fe, Mn, Zn and Cd. The studied treatments limited the stabilisation of Cr and Ni, whereas contrarily As increases in the treated sediment. PHREEQC calculations showed that the most concentrated heavy metals (Zn and Mn) are stabilized mainly by precipitation whereas Cu, Pb and Cd by a combination of precipitation and sorption processes. This chemical environment leads to the precipitation of stable iron phases, which sorb and co-precipitate considerable amounts of potentially toxic elements. Lime is significantly more effective than WMP, although it is recommended that the pH value of the mixture should remain below 9 due to the amphoteric behaviour of heavy metals. | This study was funded by the University of Alicante [GRE17-12 from] and the Spanish Government [grant number RTI2018-099052-B-I00]. Additional acknowledge to the Technical Research Services of the University of Alicante (SSTTI-UA) for the analyses performed using the equipment held at this institution, which was financed by the EU, MINECO and Generalitat Valenciana [State Programme for Knowledge Generation and Scientific and Technological Strengthening of the RþDþi System and P.O. FEDER 2007e2013 funds].
Show more [+] Less [-]Wood ash application increases pH but does not harm the soil mesofauna Full text
2017
Ching, Julia | Hovmand, Mads Frederik | Ekelund, Flemming | Rønn, Regin | Christensen, Søren | Groot, Gerard Arjen de | Mortensen, Louise Hindborg | Skov, Simon | Krogh, Paul Henning
Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions. To examine this, we performed laboratory toxicity studies of the effects of wood-ash added to an agricultural soil and the organic horizon of a coniferous plantation soil with the detrivore soil collembolans Folsomia candida and Onychiurus yodai, the gamasid predaceous mite Hypoaspis aculeifer, and the enchytraeid worm Enchytraeus crypticus. We used ash concentrations spanning 0–75 g kg⁻¹ soil. As ash increases pH we compared bioash effects with effects of calcium hydroxide, Ca(OH)2, the main liming component of ash. Only high ash concentrations above 15 g kg⁻¹ agricultural soil or 17 t ha⁻¹ had significant effects on the collembolans. The wood ash neither affected H. aculeifer nor E. crypticus. The estimated osmolalities of Ca(OH)2 and the wood ash were similar at the LC50 concentration level. We conclude that short-term chronic effects of wood ash differ among different soil types, and osmotic stress is the likely cause of effects while high pH and heavy metals is of minor importance.
Show more [+] Less [-]Biological impacts of enhanced alkalinity in Carcinus maenas Full text
2013
Cripps, Gemma | Widdicombe, Stephen | Spicer, John I. | Findlay, Helen S
Biological impacts of enhanced alkalinity in Carcinus maenas Full text
2013
Cripps, Gemma | Widdicombe, Stephen | Spicer, John I. | Findlay, Helen S
Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals’ acid–base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid–base balance in this comparatively robust crustacean species.
Show more [+] Less [-]Biological impacts of enhanced alkalinity in Carcinus maenas Full text
2013
Cripps, Gemma | Widdicombe, Stephen | Spicer, John I | Findlay, Helen S
Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species.
Show more [+] Less [-]Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil Full text
2020
Zhang, Shengze | Quan, Lingtong | Zhu, Yanping | Yan, Jin | He, Xiaoman | Zhang, Jia | Xu, Xiaoming | Hu, Zhubing | Hu, Feng | Chen, Yahua | Shen, Zhenguo | Xia, Yan
Conventional chemical soil amendments and novel material biochars have been widely reported for the immobilisation of cadmium (Cd) and lead (Pb) in polluted soil. However, information regarding their comparative effectiveness is poor. In the present study, rice husk biochar (RHB) was compared with two chemical soil amendments including hydroxyapatite (HAP) and hydrated lime (HDL) for their effectiveness to enhance plant growth and the reduction of Cd uptake and translocation by Triticum aestivum L. grown in heavy-metal-polluted soil. Compared with control and two chemical soil amendments, RHB rapidly improved wheat growth. The HAP, HDL, and RHB treated plants retained Cd and Pb in roots and restricted their translocation. The RHB treatment had the best effect on growth, yield promotion and the reduction of Cd and Pb in wheat grain. Furthermore, the soils treated with RHB and HAP showed lower DTPA-extracted Cd concentrations, and the maximum reduction was observed in HAP-amended soil. However, the DTPA-extracted Pb concentration was not significantly decreased after the application of two chemical soil amendments for 40 days; the maximum reduction was found in soil treated with RHB for 80 days. In all treatments, Cd in post-harvest soil was mainly present in exchangeable, carbonate bound, and Fe-Mn oxide Cd, while the dominant chemical form of Pb was Fe-Mn oxide Pb. Three soil amendments application decreased exchangeable and organic bound- Cd and Pb levels. HAP and RHB displayed significantly immobilisation for soil Cd and reduced translocation of heavy metal as well as its availability in soil, but the HAP had significant inhibition on growth of wheat in contaminated soil. Therefore, RHB shows a promising potential for the reduction of Cd and Pb bioaccumulation in grains from wheat grown on heavy-metal-polluted soils.
Show more [+] Less [-]Property of concrete made of recycled shale gas drilling cuttings Full text
2022
Wang, Chao-qiang | Liu, Ke | Huang, De-ming
Exploration and development of shale gas generate a lot of water-based drilling cuttings (WDC), which can then be used in concrete engineering. This work studied mix ratio optimization, mechanical properties, leaching characteristics and the microstructure of the WDC concrete. The results showed that the pH and COD values of these WDC were slightly above 9.0 and 60, respectively. All other indices satisfied the first grade standard of Chinese standard GB8978. On the other hand, a moderate amount of WDC can be improved concrete properties, especially its workability and compressive strength. When the water-binder ratio is 0.52 and the sand ratio is 41%, we can obtain C25 strength grade and 130 ~ 140 mm slump grade concrete by adding high efficiency water reducing agent and fly ash. XRD and SEM analysis showed that the silica and aluminum oxide in WDC reacted with calcium hydroxide to form secondary hydration products: C–S–H gel and ettringite, which are conducive to the formation of concrete strength and solidified the heavy metals and other contaminants. EDX analysis found it is known that the hydration products in WDC concrete can bind metal elements well. The environmental leaching test shows that the recycled WDC added to concrete products as aggregate and admixture is very environmentally friendly and sustainable.
Show more [+] Less [-]Lime Amendments to Enhance Soil Phosphorus Adsorption Capacity and to Reduce Phosphate Desorption Full text
2021
Eslamian, Faezeh | Qi, Zhiming | Qian, Cheng
Reduction in the dissolved phosphorus (P) desorption from agricultural soils could be an effective measure to prevent eutrophication. Lime is a high calcium–containing mineral that can have promising but varying responses on P desorption depending on soil type. The main objective of this research was to evaluate and compare the potential of hydrated lime and lime kiln dust, its cheaper alternative, as soil amendments to increase soil P adsorption capacity and to reduce dissolved P desorption from four soil types (sandy, sandy loam, loam, and clay loam). A batch adsorption study with varying P concentrations of 0, 0.2, 0.4, 0.6. 0.8, and 1.0 mM P and an adsorbent dose of 1% lime by air-dried soil mass at a fixed pH of 6.5 was carried out. The adsorption data fit best the Freundlich adsorption isotherm model. Both hydrated lime and lime kiln dust significantly increased the Freundlich adsorption coefficient by 3.2, 2.4, 2.0, and 1.6 times in loam, sandy, sandy loam, and clay loam soils, respectively. Although the hydrated lime showed a higher potential to increase the Langmuir maximum adsorption capacity in comparison to lime kiln dust, they both exhibited similar performance at lower P concentration ranges that are representative of the soil solution. The cumulative phosphorus desorption in the ten consecutive days agreed with the adsorption results. Therefore, lime kiln dust as a by-product could be a promising soil amendment to increase soil phosphorus adsorption capacity leading to less phosphorus desorption to water bodies. Further studies on its interaction with crop growth at field scale are required.
Show more [+] Less [-]Coagulation Behavior and Floc Properties of Dosing Different Alkaline Neutralizers into the Fenton Oxidation Effluent Full text
2018
Xu, Min | Wu, Changyong | Li, Yanan | Zhou, Baoying | Xue, Hao | Yu, Yin
Neutralization is the necessary operation to ensure the Fenton effluent pH. In situ coagulation can be induced during neutralization. In this study, three types of alkaline neutralizers (Ca(OH)₂, NaOH, and Ca(OH)₂ + NaOH) were added into the Fenton oxidized PSE to control the effluent pH of 6 to 9. The coagulation behavior, floc structure, and properties were investigated. The results indicated that the coagulation with the adding of three neutralizers can remove 9.68 to 24.02% of the TOC. Ca(OH)₂ exhibited the highest TOC removal efficiency at the dosage of 0.4 g/L. Charge neutralization ability was in the following order: Ca(OH)₂ > Ca(OH)₂ + NaOH > NaOH. Ca(OH)₂ and Ca(OH)₂ + NaOH showed the increase of floc growth rate with the increase of agent dosage, especially for Ca(OH)₂ + NaOH. Moreover, Df of NaOH flocs was higher than that of Ca(OH)₂ and Ca(OH)₂ + NaOH, indicating the floc formed by NaOH was more compact than that of Ca(OH)₂. The main coagulation process of three neutralizers was different, and it was also affected by the agent dosage (or pH). When the dosage was 0.35 g/L (pH 6–7.5), the complexation, adsorption, and bridging were the predominant processes while charge neutralization gradually became the main coagulation process for Ca(OH)₂ and Ca(OH)₂ + NaOH with the increase of dosage (pH 7.5–9).
Show more [+] Less [-]Accelerated carbonation of wood combustion ash for CO2 removal from gaseous streams and storage in solid form Full text
2018
Lombardi, Lidia | Costa, Giulia | Spagnuolo, Riccardo
In this work, ash generated by the combustion of wood in a central heating plant was used to remove and permanently store by accelerated carbonation CO₂ contained in a gas mixture simulating biogas. The process was studied as an alternative treatment to the ones currently available on the market for biogas upgrading. The process was investigated at laboratory scale by setting up a facility for directly contacting the wood ash and the synthetic biogas in a fixed bed reactor. The process was able to completely remove CO₂ during its initial phase. After about 30 h, CO₂ started to appear again in the outlet stream and its concentration rapidly increased. The specific CO₂ uptake achieved in solid carbonate form was of about 200 g/kg of dry wood ash. This value is an order of magnitude higher than the ones found for waste incineration bottom ash carrying out similar experiments. The difference was ascribed to the physicochemical properties of the ash, characterized by a fine particle size (d₅₀ < 0.2 mm) and high content of reactive phases with CO₂ (e.g., Ca hydroxides). The leaching behavior of the wood ash was examined before and after the accelerated carbonation process showing that the release of several elements was lower after the treatment; Ba leaching in particular decreased by over two orders of magnitude. However, the release of the critical elements for the management of this type of residues (especially Cr and sulfates) appeared not to be significantly affected, while V leaching increased.
Show more [+] Less [-]Pathogen Inactivation and the Chemical Removal of Phosphorus from Swine Wastewater Full text
2015
Viancelli, A. | Kunz, A. | Fongaro, G. | Kich, J. D. | Barardi, C. R. M. | Suzin, L.
Inactivation of pathogens present in animal manure prior to land application has justified the use of advanced technologies. However, some alternatives are expensive or not effective due to the organic material and suspended solids present in the effluent (e.g., ozone, UV light). The use of hydrated lime (calcium hydroxide, Ca(OH)₂) is an attractive wastewater treatment option due to the ability of lime to kill pathogens and to extract phosphorus from manure at an alkaline pH. The present study aimed to evaluate the soluble phosphorus removal and pathogen inactivation (Escherichia coli, Salmonella enterica serovar typhymurium and Porcine circovirus type 2), in the liquid fraction and in the solid generated after Ca(OH)₂ addition in swine wastewater, exposed for 3 and 24 h at different pH conditions: 9.0, 9.5, and 10.0. The results showed the efficiency of pH elevation with Ca(OH)₂ in the removal of soluble P at pH 9.0 and the total inactivation of E. coli, Salmonella, and P. circovirus type 2 at pH 10.0. The liquid fraction (reuse water) could be safely used for cleaning the swine production facilities, and the solid fraction (precipitated P) could be used as a secondary product and fertilizer.
Show more [+] Less [-]