Refine search
Results 1-10 of 56
Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem
2023
Hermann, Markus | Peeters, Edwin T.H.M. | Van den Brink, Paul J.
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Show more [+] Less [-]Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem
2023
Hermann, Markus | Peeters, Edwin T.H.M. | Van den Brink, Paul J.
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Show more [+] Less [-]Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2
2020
Tao, Huaping | Bao, Zhiwei | Jin, Cuiyuan | Miao, Wenyu | Fu, Zhengwei | Jin, Yuanxiang
Fungicides, usually refer to the chemical agents that can effectively control or kill the pathogenic microorganisms. Here, we revealed the effects of three different fungicides, imazalil (IMZ), chlorothalonil (CTL) and carbendazim (CBZ), which are typical broad-spectrum fungicides that are detected at high levels in the natural environment, on heterogeneous human epithelial colorectal cells (Caco-2 cells). All three fungicides had the potential to induce different degrees of toxicity, cause apoptosis, reactive oxygen species (ROS) and even change the cell cycle in the cells. The half maximal inhibitory concentration (IC50) of CTL is the lowest among these three fungicides, suggesting that it may have the highest exposure risk, followed by IMZ, and CBZ. The results of the real-time PCR, Western blotting, and mitochondrial membrane potential (MMP) assays and the activities of key enzymes suggested that CTL induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by the upregulation of the expression of the apoptotic p53 and bax genes, the increase of the apoptosis marker cytochrome-c, the decrease of mRNA level of bcl-2 gene, and the decrease in the MMP. Exposure to two other fungicides also upregulated the transcriptional level of bax and the expression of cytochrome-c, but the mRNA level of bcl-2 was increased (IMZ) or unchanged (CBZ), suggesting that other pathways may be involved in the induction of cellular apoptosis by these two fungicides. In addition, all three of the fungicides could induce oxidative stress in Caco-2 cells. Our data showed that the three different kinds of fungicides all caused toxic effects in Caco-2 cells through various pathways.
Show more [+] Less [-]Avoidance response of Enchytraeus albidus in relation to carbendazim ageing
2009
Kobeticova, Klara | Hofman, Jakub | Holoubek, Ivan
In this study, avoidance response of Enchytraeus albidus to LUFA 2.2 soil contaminated with pesticide carbendazim was investigated. The aim was to clarify minimal test duration and temporal changes in avoidance response due to contamination ageing. Firstly, the concentration causing 50% avoidance (EC50) was determined as 7.6 mg/kg. Then, test duration needed to reach this value (ET50 = approximately 18 h) was identified. Finally, the capability of E. albidus avoidance test to reflect the changes of pollutant bioavailability was tested. The soil was spiked with carbendazim at the EC50 concentration 1, 14, or 28 days before the test started and avoidance effects of fresh versus aged contamination were compared. The results indicated that enchytraeids preferred soil contaminated for 28 days prior to assay where carbendazim was probably less bioavailable than in freshly spiked soil. Our results open an interesting research area of potential use of avoidance tests for contaminant bioavailability assessment.
Show more [+] Less [-]Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study
2022
Lv, Xia | Li, Jing-Xin | Wang, Jia-Yue | Tian, Xiang-Ge | Feng, Lei | Sun, Cheng-Peng | Ning, Jing | Wang, Chao | Zhao, Wen-Yu | Li, Ya-Chen | Ma, Xiao-Chi
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Show more [+] Less [-]Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects
2021
Mo, Qiming | Yang, Xingjian | Wang, Jinjin | Xu, Huijuan | Li, Wenyan | Fan, Qi | Gao, Shuang | Yang, Wenyi | Gao, Chengzhen | Liao, Dehua | Li, Yongtao | Zhang, Yulong
Polyethylene (PE) and polypropylene (PP) microplastics (MPs), as carriers, can bind with pesticides, which propose harmful impacts to aqueous ecosystems. Meanwhile, carbofuran and carbendazim (CBD), two widely used carbamate pesticides, are toxic to humans because of the inhibition of acetylcholinesterase activity. The interaction between two MPs and two pesticides could start in farmland and be maintained during transportation to the ocean. Herein, the adsorption behavior and mechanism of carbofuran and carbendazim (CBD) by PE and PP MPs were investigated via characterization and density functional theory (DFT) simulation. The adsorption kinetic and thermodynamic data were best described by pseudo-second-order kinetics and the Freundlich models. The adsorption behaviors of individual carbofuran/CBD on both MPs were very similar. The CBD adsorption rate and capacity of PE and PP MPs were higher than those of carbofuran. This phenomenon explained the lower negative effects of DOM (oxalic acid, glycine (Gly)) on CBD adsorption relative to those of carbofuran. The presence of oxalic acid and Gly decreased the PE adsorption by 20.40–48.02% and the PP adsorption by 19.27–42.11%, respectively. It indicated the significance of DOM in carbofuran cycling. The adsorption capacities were negatively correlated with MPs size, indicating the importance of specific surficial area. Fourier transformation infrared spectroscopy before and after adsorption suggested that the adsorption process did not produce any new covalent bond. Instead, intermolecular van der Waals forces were one of the primary adsorption mechanisms of carbofuran and CBD by MPs, as evidenced by DFT calculations. Based on the zeta potential, the electrostatic interaction explained the higher adsorption CBD by MPs than carbofuran.
Show more [+] Less [-]Pesticides in surface waters of tropical river basins draining areas with rice–vegetable rotations in Hainan, China: Occurrence, relation to environmental factors, and risk assessment
2021
Tan, Huadong | Zhang, Huijie | Wu, Chunyuan | Wang, Chuanmi | Li, Qinfen
Pesticides are heavily applied in rice–vegetable rotations in tropical China, yet publicly available information on the contamination and risk of currently used pesticides (CUPs) and legacy pesticides (LPs) in surface waters of river basins draining these areas is very limited. Therefore, in two tropical river basins (Nandu River and Wanquan River basins) dominated by rice–vegetable rotations in Hainan, China, pesticides were analyzed in 256 surface water samples in wet and dry seasons. Forty-one pesticides were detected, and total concentrations ranged from not detectable to 24.2 μg/L. Carbendazim and imidacloprid were the two most prevalent CUPs, detected in 59.8% and 17.7%, respectively, of surface water samples at concentrations above 0.1 μg/L. Chlorpyrifos was the main LP, detected in 9.0% of samples at a concentration above 0.05 μg/L. The fungicides difenoconazole and emamectin benzoate, the herbicide butachlor, and the insecticide acetamiprid occurred in ≥12.5% samples at concentrations above 0.1 μg/L. Surface waters typically (85.2%) contained 5 to 15 residues, with an average of nine. Seasonally, the concentrations of the 41 pesticides were in the order January > July > November > September. Spatially, the composition of the main CUPs (not LPs) was significantly different depending on position in the drainage, which also changed with seasons. Crop and pest types and wet and dry seasons were the key factors controlling the spatiotemporal distribution of CUPs and LPs in surface waters. On the basis of evaluations of the exposures to individual pesticides and the dominant combinations with ≥8 pesticides, multiple pesticides were likely a significant risk to aquatic organisms, although noncarcinogenic and carcinogenic risks to humans were low. This study provides valuable data to better understand pesticide occurrence and ecological risks in river basins draining areas with rice–vegetable rotation systems in tropical China.
Show more [+] Less [-]Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China
2020
Liu, Wei | Yao, Hongye | Xu, Wei | Liu, Guangbing | Wang, Xuebing | Tu, Yong | Shi, Peng | Yu, Nanyang | Li, Aimin | Wei, Si
Owing to the production and use of chemicals in chemical industry parks (CIPs), these areas are considered to be highly polluted. However, the type of pollutants presents in the wastewater from CIPs and the risk posed to the environment due to the release of these pollutants remains unclear. In this study, suspect screening was combined with traceability analysis to determine the type of pollutants present in wastewaters at 9 chemical enterprises and wastewater treatment plants (WWTPs) in the CIPs. Additionally, the distribution of nine pollutants from the WWTPs’ effluent stage and the risk they posed to the surrounding river was examined through target analysis. Upon conducting suspect analysis, the presence of 65 and 64 chemicals in the 9 chemical enterprises’ wastewaters and WWTPs, respectively, was tentatively identified. Traceability analysis of the compounds screened in the effluent from the WWTPs determined that 41 substances were identified as characteristic pollutants of the chemical enterprises, indicating that the suspect screening strategy enabled relatively more efficient identification of the characteristic pollutants compared to traditional quantitative analysis. Targeting analysis combined with ecological risk assessment showed that metolachlor, carbendazim, atrazine, diuron, and chlorpyrifos posed relatively higher risks to aquatic organisms in the surrounding river. Therefore, the refined management of the wastewater treatment plant in the CIPs is necessary.
Show more [+] Less [-]Composition and endocrine effects of water collected in the Kibale national park in Uganda
2019
Spirhanzlova, Petra | Fini, Jean-Baptiste | Demeneix, Barbara | Lardy-Fontan, Sophie | Vaslin-Reimann, Sophie | Lalere, Béatrice | Guma, Nelson | Tindall, Andrew | Krief, Sabrina
Pesticides are used worldwide with potential harmful effects on both fauna and flora. The Kibale National Park in Uganda, a site renowned for its biodiversity is surrounded by tea, banana and eucalyptus plantations as well as maize fields and small farms. We previously showed presence of pesticides with potential endocrine disruptive effects in the vicinity. To further investigate the water pollution linked to agricultural pressure in this protected area, we implemented a complementary monitoring strategy based on: analytical chemistry, effects based methods and the deployment of Polar Organic Chemical Integrative Samplers (POCIS). Chemical analysis of the POCIS extracts revealed the presence of 13 pesticides: carbofuran, DEET, 2.4-D amine, carbaryl, ametryn, isoproturon, metolachlor, terbutryn, dimethoate, imidacloprid, picaridin, thiamethoxam, carbendazim, with the first three being present in the largest quantities. Water samples collected at the POCIS sampling sites exhibited thyroid and estrogen axis disrupting activities in vivo, in addition to developmental and behaviour effects on Xenopus laevis tadpoles model. Based on our observations, for the health of local human and wildlife populations, further monitoring as well as actions to reduce agrochemical use should be considered in the Kibale National Park and in regions exposed to similar conditions.
Show more [+] Less [-]Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave
The increased use of pesticides has caused concern over the possible direct association of exposure to combinations of these compounds with bee health problems. There is growing proof that bees are regularly exposed to mixtures of agrochemicals, but most research has been focused on managed bees living in farmland, whereas little is known about exposure of wild bees, both in farmland and urban habitats. To determine exposure of wild bumblebees to pesticides in agricultural and urban environments through the season, specimens of five different species were collected from farms and ornamental urban gardens in three sampling periods. Five neonicotinoid insecticides, thirteen fungicides and a pesticide synergist were analysed in each of the specimens collected. In total, 61% of the 150 individuals tested had detectable levels of at least one of the compounds, with boscalid being the most frequently detected (35%), followed by tebuconazole (27%), spiroxamine (19%), carbendazim (11%), epoxiconazole (8%), imidacloprid (7%), metconazole (7%) and thiamethoxam (6%). Quantifiable concentrations ranged from 0.17 to 54.4 ng/g (bee body weight) for individual pesticides. From all the bees where pesticides were detected, the majority (71%) had more than one compound, with a maximum of seven pesticides detected in one specimen. Concentrations and detection frequencies were higher in bees collected from farmland compared to urban sites, and pesticide concentrations decreased through the season. Overall, our results show that wild bumblebees are exposed to multiple pesticides when foraging in agricultural and urban landscapes. Such mixtures are detected in bee tissues not just during the crop flowering period, but also later in the season. Therefore, contact with these combinations of active compounds might be more prolonged in time and widespread in the environment than previously assumed. These findings may help to direct future research and pesticide regulation strategies to promote the conservation of wild bee populations.
Show more [+] Less [-]