Refine search
Results 1-10 of 25
Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses
2022
Hao, Baihui | Zhang, Zhechao | Bao, Zhihua | Hao, Lijun | Diao, Fengwei | Li, Frank Yonghong | Guo, Wei
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Show more [+] Less [-]Chronic exposure to PPCPs mixture at environmentally relevant concentrations (ERCs) altered carbohydrate and lipid metabolism through gut and liver toxicity in zebrafish
2021
Hamid, Naima | Junaid, Muhammad | Wang, Yan | Pu, Shi-Ya | Jia, Pan-Pan | Pei, De-Sheng
Pharmaceuticals and personal care products (PPCPs) have been widely distributed and posed ecotoxicological risks in the aquatic environment. This study aims to evaluate the toxic effects after chronic exposure to PPCPs mixture at the environment relevant concentrations (ERCs). Our results indicated that PPCPs induced serious metabolic effects by disturbing the carbohydrate and lipid metabolism pathways. Chronic exposure caused a significant reduction in the hepatosomatic index (HSI), the gut weight ratios, and histological alterations in liver and gut tissues. Further, exposure to the combined PPCPs disrupted the carbohydrate metabolism via significant upregulation of hk1, gk, pck1, and insr genes. The lipid metabolism was affected with higher ppars expression levels that increased the fatty acid β-oxidation and ultimately decreased the lipidogenesis. Moreover, the altered responses of the insulin growth factor (IGF) pathway more in male gut tissue than that of female revealed sex-dependent disturbance in the gut homeostasis induced by PPCPs mixture. In conclusion, chronic exposure to PPCPs mixtures at ERCs can induce developmental effects and metabolic dysfunction in both male and female fish. The consumption and environmental disposal of these PPCPs should be regulated to ensure ecological health and environmental safety.
Show more [+] Less [-]Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity
2020
Buerger, Amanda N. | Dillon, David T. | Schmidt, Jordan | Yang, Tao | Zubcevic, Jasenka | Martyniuk, Christopher J. | Bisesi, Joseph H.
Microbiome community structure is intimately involved in key biological functions in the gastrointestinal (GI) system including nutrient absorption and lipid metabolism. Recent evidence suggests that disruption of the GI microbiome is a contributing factor to metabolic disorders and obesity. Poor diet and chemical exposure have been independently shown to cause disruption of the GI microbiome community structure and function. We hypothesized that the addition a chemical exposure to overfeeding exacerbates adverse effects on the GI microbiome community structure and function. To test this hypothesis, adult zebrafish were fed a normal feeding regime (Control), an overfeeding regime (OF), or an overfeeding regime contaminated with diethylhexyl phthalate (OF + DEHP), a suspected obesogen-inducing chemical. After 60 days, fecal matter was collected for sequencing, identification, and quantification of the GI microbiome using the 16s rRNA hypervariable region. Analysis of beta diversity indicated distinct microbial profiles between treatments with the largest divergence between Control and OF + DEHP groups. Based upon functional predictions, OF + DEHP treatment altered carbohydrate metabolism, while both OF and OF + DEHP affected biosynthesis of fatty acids and lipid metabolism. Co-occurrence network analysis revealed decreases in cluster size and a fracturing of the microbial community network into unconnected components and a loss of keystone species in the OF + DEHP treatment when compared to Control and OF treatments. Data suggest that the addition of DEHP in the diet may exacerbate microbial dysbiosis, a consequence that may explain in part its role as an obesogenic chemical.
Show more [+] Less [-]Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China
2020
Sun, Xuemei | Chen, Bijuan | Xia, Bin | Li, Qiufen | Zhu, Lin | Zhao, Xinguo | Gao, Yaping | Qu, Keming
Microplastics (MPs) pollution in the marine environment has attracted considerable global attention. However, the colonization of microorganisms on mariculture-derived MPs and their effects on mariculture remain poorly understood. In this study, the MPs (fishing nets, foams and floats) and a natural substrate, within size ranges (1–4 mm), were then incubated for 21 days in Sungo Bay (China), and the composition and diversity of bacterial communities attached on all substrates were investigated. Results showed that bacterial communities on MPs mainly originated from their surrounding seawater and sediment, with an average contribution on total MPs adherent population of 47.91% and 37.33%, respectively. Principle coordinate analysis showed that community similarity between MPs and surrounding seawater decreased with exposure time. In addition, lower average bacterial community diversity and higher relative abundances of bacteria from the genera Vibrio, Pseudoalteromonas and Alteromonas on MPs than those in their surrounding seawater and sediments indicated that MPs might enrich potential pathogens and bacteria related with carbohydrate metabolism. They are responsible for the significant differences in KEGG Orthology pathways (infectious disease and carbohydrate metabolism) between MPs and seawater. The KO pathway (Infectious Diseases) associated with MPs was also significantly higher than those with feathers in the nearshore area. MPs might be vectors for enrichment of potentially pathogenic Vibrio, and enhance the ecological risk of MPs to mariculture industry.
Show more [+] Less [-]Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles
2019
Liu, Kang | Cai, Miaomiao | Hu, Chengxiao | Sun, Xuecheng | Cheng, Qin | Jia, Wei | Yang, Tao | Nie, Min | Zhao, Xiaohu
Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, “The World Capital of Selenium”, and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.
Show more [+] Less [-]β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Show more [+] Less [-]The associations of nitrated polycyclic aromatic hydrocarbon exposures with plasma glucose and amino acids
2021
He, Linchen | Hu, Xinyan | Day, Drew B. | Yan, Meilin | Teng, Yanbo | Liu, Xing (Lucy) | Yan, Erik | Xiang, Jianbang | Qiu, Xinghua | Mo, Jinhan | Zhang, Yinping | Zhang, Junfeng (Jim) | Gong, Jicheng
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely studied for their mutagenic and carcinogenic effects. This study aims to investigate whether exposure to nitro-PAHs is associated with biomarkers of carbohydrate metabolism, an underlying risk factor for metabolic disorder. Early morning urine and blood samples were longitudinally collected two times with a four-week interval from 43 healthy adults. Five urinary amino-PAHs (1-aminonaphthalene, 2-aminonaphthalene, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene) were measured as biomarkers of nitro-PAH exposures. We measured plasma concentrations of glucose and six amino acids that can regulate insulin secretion, including aspartate (Asp), glutamate (Glu), glutamine (Gln), alanine (Ala), Arginine (Arg), and ornithine (Orn). We found that increasing concentrations of 9-aminophenanthrene were significantly associated with increasing glucose levels and with decreasing Asp, Glu, Ala, and Orn levels. We estimated that 26.4 %–43.8 % of the 9-aminophenanthrene-associated increase in glucose level was mediated by Asp, Glu, and Orn. These results suggest that exposure to certain nitro-PAHs affects glucose homeostasis, partly resulting from the depletion of insulin-stimulating amino acids (Asp, Glu, and Orn).
Show more [+] Less [-]Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism
2019
Qian, Le | Zhang, Jie | Chen, Xiangguang | Qi, Suzhen | Wu, Peizhuo | Wang, Chen | Wang, Chengju
Boscalid as one of the most widely used succinate dehydrogenase inhibitor (SDHI) fungicides has been frequently detected in both freshwater and estuarine environments. Its acute toxic effects on zebrafish and freshwater algae have been reported in our previous studies. To further investigate its chronic toxic effects to aquatic organisms, adult zebrafish were exposed for 28 days to a series of environmentally relevant boscalid concentrations in this study. Growth indicators and histopathology were determined in this study. Results indicated that boscalid inhibited the growth of zebrafish and induced damage in the kidneys and liver. Carbohydrate and lipid metabolism as the key pathways of energy metabolism in growth of zebrafish were also investigated. Results showed boscalid caused an increase in the activity of hexokinase (HK), the content of glycogen, glucose-6-phosphatase (G6Pase), and insulin (INS) in liver and a decrease in blood glucose content and succinate dehydrogenase (SDH) activity. Boscalid reduced the total content of triacylglyceride (TG) and cholesterol (TC) and the activity of fatty acid synthase (FAS) and acetyl coenzyme A carboxylase (ACC) in the liver. Correspondingly, expression of the genes related to carbohydrate and lipid metabolism in liver and intestine was affected by boscalid, especially in the significant upregulation of G6Pase and pparα and downregulation of SGLT-1 and AMY. Results suggested that boscalid could affect carbohydrate metabolism of adult zebrafish via regulation of gluconeogenesis and glycolysis at 0.1 mg/L. Moreover, boscalid might induce an increase in β-oxidation and a decrease in lipid synthesis at 0.01 mg/L. In conclusion, our study identified that carbohydrate and lipid metabolism are the possible biological pathways that mediate boscalid-induced developmental effects.
Show more [+] Less [-]Bioimmobilization of lead in phosphate mining wasteland by isolated strain Citrobacter farmeri CFI-01
2022
Li, Yizhong | Guo, Shuyu | Zheng, Yunting | Yu, Junxia | Chi, Ruan | Xiao, Chunqiao
Industrial phosphate rock (PR) treatment has introduced lead (Pb) contamination into phosphate mining wasteland, causing serious contamination. Although bioremediation is considered an effective method and studies have investigated the bioimmobilization of Pb contamination in phosphate mining wasteland by phosphate-solubilizing bacteria (PSB), the bioimmobilization mechanism remains unclear. In this study, a strain Citrobacter farmeri CFI-01 with phosphate-solubilizing and Pb-tolerant abilities was isolated from a phosphate mining wasteland. Liquid culture experiments showed that the maximum content of soluble phosphate and the percentage amount of Pb immobilized after 14 days were 351.5 mg/L and 98.18%, respectively, with a decrease in pH. Soil experiments showed that CFI-01 had reasonable bioimmobilization ability, and the percentage amount of Pb immobilized was increased by 7.790% and 22.18% in the groups inoculated with CFI-01, respectively, compared with that of the groups not inoculated with CFI-01. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the immobilization of Pb was also ascribed to changes in the functional groups (e.g., hydroxyl and carboxyl groups) and the formation of lead phosphate sediments. Finally, the results of the metagenomic analysis indicated that changes in the microbial community structure, enrichment of related functional abundances (e.g., metal metabolism, carbohydrate metabolism, and amino acid metabolism functions), and activation of functional genes (e.g., zntA, smtB, cadC, ATOX1, smtA, and ATX1) could help immobilize soil Pb contamination and explore the mechanism of bacterial bioimmobilization in Pb-contaminated soil. This study provides insights for exploring the immobilization mechanism of Pb contamination in phosphate mining wasteland using PSB, which has significance for further research.
Show more [+] Less [-]A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases
2021
Akhtar, Evana | Roy, Anjan Kumar | Haq, Md Ahsanul | von Ehrenstein, Ondine S. | Ahmad, Sultan | Vahter, Marie | Ekström, Eva-Charlotte | Kippler, Maria | Wagatsuma, Yukiko | Raqib, Rubhana
There is growing interest in understanding the contribution of environmental toxicant exposure in early life to development of cardiometabolic diseases (CMD) in adulthood. We aimed to assess associations of early life exposure to arsenic and cadmium with biomarkers of CMD in children in rural Bangladesh. From a longitudinal mother-child cohort in Matlab, Bangladesh, we followed up 540 pairs. Exposure to arsenic (U–As) and cadmium (U–Cd) was assessed by concentrations in urine from mothers at gestational week 8 (GW8) and children at ages 4.5 and 9 years. Blood pressure and anthropometric indices were measured at 4.5 and 9 years. Metabolic markers (lipids, glucose, hemoglobin A1c, adipokines, estimated glomerular filtration rate (eGFR) were determined in plasma/blood of 9 years old children. In linear regression models, adjusted for child sex, age, height-for-age z score (HAZ), BMI-for-age z score (BAZ), socioeconomic status (SES) and maternal education, each doubling of maternal and early childhood U–Cd was associated with 0.73 and 0.82 mmHg increase in systolic blood pressure (SBP) respectively. Both early and concurrent childhood U–Cd was associated with diastolic (D)BP (β = 0.80 at 4.5 years; β = 0.75 at 9 years). Each doubling of U–Cd at 9 years was associated with decrements of 4.98 mg/dL of total cholesterol (TC), 1.75 mg/dL high-density lipoprotein (HDL), 3.85 mg/dL low-density lipoprotein (LDL), 0.43 mg/dL glucose and 4.29 units eGFR. Each doubling of maternal U–Cd was associated with a decrement of 1.23 mg/dL HDL. Both maternal and childhood U–As were associated with decrement in TC and HDL. Multiple comparisons were checked with family-wise error rate Bonferroni-type-approach. The negative associations of arsenic and cadmium with biomarkers of CMD in preadolescent children indicated influence of both metal(loid)s on fat and carbohydrate metabolism, while cadmium additionally influenced kidney function and BP. Thus, fewer outcomes were associated with U–As compared to U–Cd at preadolescence.
Show more [+] Less [-]