Refine search
Results 1-10 of 78
Sediment characterisation and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province Full text
2019
Kalita, Suravi | Sarma, Hari Prasad | Devi, Arundhuti
The sediment characterisation of wetlands belonging to the Northeastern Region of India particularly regarding the assessment of sediment carbon stock is very scanty. The presently available literature on the wetlands cannot be employed as a common model for managing the wetlands of the Northeastern Region of India as wetlands are a sensitive ecosystem with a different origin or endogenous interventions. Thereby, this research was conducted on Deepor Beel for investigating the spatial and seasonal variation of sediment parameters, the relationship between the parameters and pollution status of the wetland. Results revealed that the study area is of an acidic nature with a sandy clay loam type texture. Organic carbon, total nitrogen and available nitrogen were higher in sediments in the monsoon period. The mean stock of the sediment carbon pool of Deepor Beel is estimated to be 2.5 ± 0.7 kg m−2. The average non-residual fraction percentage (63.2%) of Pb was higher than the residual fraction. Zn content ∼490 mg kg−1 exceeding its effect range medium (ERM) was determined to suggest frequent biological adverse effects. Highest metal enrichment factor (EF) values were shown by Zn and Pb, which ranged between 78 and 255. Risk assessment code (RAC) values of Pb between 21 and 29% indicated its high bio-accessibility risk. Pearson's coefficient matrix revealed a low degree of positive correlation between organic carbon content and metal concentration. Principal component analysis revealed that the first component comprising of EC, basic cations and metals accounted for 62.3% of variance while the second component (OM, OC, TN, AN, AP) and the third component (pH) accounted for 21.8% and 7.0% of the variance, respectively. The present study revealed the adverse impact of human inputs on the Deepor Beel quality status.
Show more [+] Less [-]Inferior adaptation of bay sediments in a eutrophic shallow lake to winter season for organic matter decomposition Full text
2016
Song, Na | He, Yu-Hong | Jiang, He-Long
Sediments in lake bays receive the greatest external pollutants mainly including terrestrial plants and river macrophyte detritus. This work investigated response and adaptation of bay sediments to organic matter (OM) decomposition under cold and hot seasons. After three month and incubated at 5 °C, it was found that the total organic carbon (TOC) removal efficiencies ranged from 15.4 to 13.1% in bay sediments to 22.6–25.7% in pelagic zone. These results determined that poorer OM decomposition occurred in the bay zone during the winter months compared to pelagic zone in a eutrophic shallow lake. High-throughput sequencing and network interactions revealed that the reactions were mainly due to the changing microbial community structure and species interaction at selected areas during different seasons. The bay zone communities are poorly adapted to utilizing the more recalcitrant carbon pool than the pelagic communities. Also, even though more taxa reside in bay communities, less co-occurrences interaction between taxa occurs, which mean that less inter taxa competition for the same resource. In consideration of our study, the potential harm, such as the terrestrialization process speeding up and water quality worsening will be happened, we need to exploit ways to enhance litter biodegradation in the bay zone in winter.
Show more [+] Less [-]Identifying potential sources of variability between vegetation carbon storage estimates for urban areas Full text
2013
Davies, Zoe G. | Dallimer, Martin | Edmondson, Jill L. | Leake, Jonathan R. | Gaston, Kevin J.
Although urbanisation is a major cause of land-use change worldwide, towns and cities remain relatively understudied ecosystems. Research into urban ecosystem service provision is still an emerging field, yet evidence is accumulating rapidly to suggest that the biological carbon stores in cities are more substantial than previously assumed. However, as more vegetation carbon densities are derived, substantial variability between these estimates is becoming apparent. Here, we review procedural differences evident in the literature, which may be drivers of variation in carbon storage assessments. Additionally, we quantify the impact that some of these different approaches may have when extrapolating carbon figures derived from surveys up to a city-wide scale. To understand how/why carbon stocks vary within and between cities, researchers need to use more uniform methods to estimate stores and relate this quantitatively to standardised ‘urbanisation’ metrics, in order to facilitate comparisons.
Show more [+] Less [-]Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis Full text
2011
Wang, Yan | Xu, Hao | Wu, Xu | Zhu, Yimei | Gu, Baojing | Niu, Xiaoyin | Liu, Anqin | Peng, Changhui | Ge, Ying | Chang, Jie
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha⁻¹ yr⁻¹ for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall.
Show more [+] Less [-]Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality Full text
2021
Pollard, Zoe A. | Goldfarb, Jillian L.
To meet human food and fiber needs in an environmentally and economically sustainable way, we must improve the efficiency of waste, water, and nutrient use by converting vast quantities of agricultural and food waste to renewable bioproducts. This work converts waste cherry pits, an abundant food waste in the Great Lakes region, to biochars and activated biochars via slow pyrolysis. Biochars produced have surface areas between 206 and 274 m²/g and increased bioavailability of Fe, K, Mg, Mn, and P. The biochars can be implemented as soil amendments to reduce nutrient run-off and serve as a valuable carbon sink (biochars contain 74–79% carbon), potentially mitigating harmful algal blooms in the Great Lakes. CO₂-activated biochars have surface areas of up to 629 m²/g and exhibit selective metal adsorption for the removal of metals from simulated contaminated drinking water, an environmental problem plaguing this region. Through sustainable waste-to-byproduct valorization we convert this waste food biomass into biochar for use as a soil amendment and into activated biochars to remove metals from drinking water, thus alleviating economic issues associated with cherry pit waste handling and reducing the environmental impact of the cherry processing industry.
Show more [+] Less [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta Full text
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
Show more [+] Less [-]Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids Full text
2020
Chang, Zhaofeng | Tian, Luping | Li, Fangfang | Wu, Min | Steinberg, Christian E.W. | Pan, Bo | Xing, Baoshan
Condensed organic matters (COM) with black carbon-like structures are considered as long-term carbon sinks because of their high stability. It is difficult to distinguish COM from general organic matter by conventional chemical analysis, thus the contribution by and interaction mechanisms of organo-mineral complexes in COM stabilization are unclear and generally neglected. Molecular markers related to black carbon-like structures, such as benzene polycarboxylic acids (BPCAs), are promising tools for the qualitative and quantitative analysis of COM. In this study, one natural soil and two cultivated soils with 25 y- or 55 y-tillage activities were collected and the distribution characteristics of BPCAs were detected. All the investigated soils showed similar BPCA distribution pattern, and over 60% of BPCAs were detected in clay fraction. The extractable BPCA contents were substantially increased after mineral removal. The ratios of BPCA contents before and after mineral removal indicate the extent of COM-mineral particle interactions, and our results suggested that up to 73% COM were protected by mineral particles, and more stronger interactions were noted on clay than on silt. The initial cultivation dramatically decreased COM-clay interactions, and this interaction was recovered only slowly after 55-y cultivation. Kaolinite and muscovite are important for COM protection. But a possible negative correlation between BPCAs and reactive iron oxides of the cultivated soils suggested that iron may promote COM degradation when disturbed by tillage activities. This study provided a new angle to study the stabilization of COM and emphasized the importance of organo-mineral complexes for COM stabilization.
Show more [+] Less [-]Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland Full text
2020
Wang, Peng | Guo, Jin | Xu, Xinyu | Yan, Xuebin | Zhang, Kangcheng | Qiu, Yunpeng | Zhao, Qingzhou | Huang, Kailing | Luo, Xi | Yang, Fei | Guo, Hui | Hu, Shuijin
Soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen (N) inputs and industrial activities. While the detrimental effects of acidification on forests have been extensively studied, less attention has been paid to grasslands, particularly alpine grasslands. In a soil pH manipulation experiment in the Qinghai-Tibet Plateau, we examined the effects of soil acidification on plant roots, which account for the major part of alpine plants.After three years of manipulation, soil pH decreased from 6.0 to 4.7 with the acid-addition gradient, accompanied by significant changes in the availability of soil nitrogen, phosphorus and cations. Plant composition shifted with the soil acidity, with graminoids replacing forbs. Differing from findings in forests, soil acidification in the alpine grassland increased root biomass by increasing the fraction of coarse roots and the production of fine roots, corresponding to enhanced sedge and grass biomass, respectively. In addition, litter decomposability decreased with altered root morphological and chemical traits, and soil acidification slowed root decomposition by reducing soil microbial activity and litter quality.Our results showed that acidification effect on root dynamics in our alpine grassland was significantly different from that in forests, and supported similar results obtained in limited studies in other grassland ecosystems. These results suggest an important role of root morphology in mediating root dynamics, and imply that soil acidification may lead to transient increase in soil carbon stock as root standing biomass and undecomposed root litter. These changes may reduce nutrient cycling and further constrain ecosystem productivity in nutrient-limiting alpine systems.
Show more [+] Less [-]Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions Full text
2019
Bhanja, Soumendra N. | Wang, Junye | Shrestha, Narayan K. | Zhang, Xiaokun
A conversion of the global terrestrial carbon sink to a source is critically dependent on the microbially mediated decomposition of soil organic matter (SOM). We have developed a detailed, process-based, mechanistic model for simulating SOM decomposition and its associated processes, based on Microbial Kinetics and Thermodynamics, called the MKT model. We formulated the sequential oxidation-reduction potential (ORP) and chemical reactions undergoing at the soil-water zone using dual Michaelis-Menten kinetics. Soil environmental variables, as required in the MKT model, are simulated using one of the most widely used watershed-scale models - the soil water assessment tool (SWAT). The MKT model was calibrated and validated using field-scale data of soil temperature, soil moisture, and N₂O emissions from three locations in the province of Saskatchewan, Canada. The model evaluation statistics show good performance of the MKT model for daily soil N₂O simulations. The results show that the proposed MKT model can perform better than the more widely used process-based and SWAT-based models for soil N₂O simulations. This is because the multiple processes of microbial activities and environmental constraints, which govern the availability of substrates to enzymes were explicitly represented. Most importantly, the MKT model represents a step forward from conceptual carbon pools at varying rates.
Show more [+] Less [-]Nitrogen-induced new net primary production and carbon sequestration in global forests Full text
2018
Du, Enzai | de Vries, Wim
Nitrogen (N) deposition and biological N fixation (BNF) are main external N inputs into terrestrial ecosystems. However, few studies have simultaneously quantified the contribution of these two external N inputs to global NPP and consequent C sequestration. Based on literature analysis, we estimated new net primary production (NPP) due to external N inputs from BNF and N deposition and the consequent C sinks in global boreal, temperate and tropical forest biomes via a stoichiometric scaling approach. Nitrogen-induced new NPP is estimated to be 3.48 Pg C yr⁻¹ in global established forests and contributes to a C sink of 1.83 Pg C yr⁻¹. More specifically, the aboveground and belowground new NPP are estimated to be 2.36 and 1.12 Pg C yr⁻¹, while the external N-induced C sinks in wood and soil are estimated to be 1.51 and 0.32 Pg C yr⁻¹, respectively. BNF contributes to a major proportion of N-induced new NPP (3.07 Pg C yr⁻¹) in global forest, and accounts for a C sink of 1.58 Pg C yr⁻¹. Compared with BNF, N deposition only makes a minor contribution to new NPP (0.41 Pg C yr⁻¹) and C sinks (0.25 Pg C yr⁻¹) in global forests. At the biome scale, rates of N-induced new NPP and C sink show an increase from boreal forest towards tropical forest, as mainly driven by an increase of BNF. In contrast, N deposition leads to a larger C sink in temperate forest (0.11 Pg C yr⁻¹) than boreal (0.06 Pg C yr⁻¹) and tropical forest (0.08 Pg C yr⁻¹). Our estimate of total C sink due to N-induced new NPP approximately matches an independent assessment of total C sink in global established forests, suggesting that external N inputs by BNF and atmospheric deposition are key drivers of C sinks in global forests.
Show more [+] Less [-]