Refine search
Results 1-5 of 5
Carpobrotus spp. patches as trap for litter: Evidence from a Mediterranean beach
2021
Gallitelli, L. | Battisti, C. | Olivieri, Z. | Marandola, C. | Acosta, A.T.R. | Scalici, M.
Dunal plants may affect the patterns of deposition of beach litter. In this study, we aimed at evaluating if Carpobrotus spp. patches may act as a litter trap in coastal dune systems. To do so, we counted the number of macrolitter occurring in both Carpobrotus and control (embryo dune vegetation) patches classifying each item into categories according to the Marine Strategy. Totally, we observed a significant difference between litter trapped in Carpobrotus (331 items, representing 62.4% of the total beach litter) and control (199, 37.6%). Plastic fragments were the most trapped items by both Carpobrotus (46.2%) and control patches (47.2%). We also calculated the item co-occurrence, obtaining a random aggregated ‘litter community’. The main emerging output is that Carpobrotus patches act as filter in respect to different anthropogenic materials (overall plastics), suggesting that alien plant management actions may contribute to solve beach litter issues as well.
Show more [+] Less [-]Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii
2016
Liu, Wuxing | Zhang, Chengjun | Hu, Pengjie | Luo, Yongming | Wu, Longhua | Sale, Peter | Tang, Caixian
Using hyperaccumulator plants is an important method to remove heavy metals from contaminated land. Carpobrotus rossii, a newly found Cd hyperaccumulator, has shown potential to remediate Cd-contaminated soils. This study examined the effect of nitrogen forms on Cd phytoextraction by C. rossii. The plants were grown for 78 days in an acid soil spiked with 20 mg Cd kg⁻¹ and supplied with (NH₄)₂SO₄, Ca(NO₃)₂, urea, and chicken manure as nitrogen (N) fertilizers. Nitrification inhibitor dicyandiamide (DCD) was applied to maintain the ammonium (NH₄ ⁺) form. Nitrogen fertilization increased shoot biomass but decreased root biomass with the highest shoot biomass occurring in the manure treatment. Compared to the no-N control, urea application did not affect shoot Cd concentration, but increased Cd content by 17 % due to shoot biomass increase. Chicken manure significantly decreased CaCl₂-extractable Cd in soil, and the Cd concentration and total Cd uptake in the plant. Rhizosphere pH was the highest in the manure treatment and the lowest in the NH₄ ⁺ treatments. The manure and nitrate (NO₃ ⁻) treatments tended to have higher rhizosphere pH than their respective bulk soil pH, whereas the opposite was observed for urea and NH₄ ⁺ treatments. Furthermore, the concentrations of extractable Cd in soil and Cd in the plant correlated negatively with rhizosphere pH. The study concludes that urea significantly enhanced the Cd phytoaccumulation by C. rossii while chicken manure decreased Cd availability in soil and thus the phytoextraction efficiency.
Show more [+] Less [-]Australian native plant species Carpobrotus rossii (Haw.) Schwantes shows the potential of cadmium phytoremediation
2014
Zhang, Chengjun | Sale, Peter W. G. | Doronila, Augustine I. | Clark, Gary J. | Livesay, Caitlin | Tang, Caixian
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg⁻¹Cd), Zn (150–2,400 mg kg⁻¹Zn) or Cd + Zn (20 + 150, 40 + 300, 80 + 600 mg kg⁻¹). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g⁻¹for Cd and 1,300 μg g⁻¹for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg⁻¹Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.
Show more [+] Less [-]Cadmium uptake by Carpobrotus rossii (Haw.) Schwantes under different saline conditions
2016
Zhang, Chengjun | Sale, Peter W. G. | Tang, Caixian
Plants used for phytoextraction of heavy metals from contaminated soils with high levels of salinity should be able to accumulate heavy metals and also be tolerant to salinity. Australian native halophyte species Carpobrotus rossii has recently been shown to tolerate and accumulate multiple heavy metals, especially cadmium (Cd). This study examined the effects of salt type and concentration on phytoextraction of Cd in C. rossii. Plants were grown in contaminated soil for 63 days. The addition of salts increased plant growth and enhanced the accumulation of Cd in shoots up to 162 mg kg⁻¹ which almost doubled the Cd concentration (87 mg kg⁻¹) in plants without salt addition. The increased Cd accumulation was ascribed mainly to increased ionic strength in soils due to the addition of salts and resultantly increased the mobility of Cd. In comparison, the addition of Cl⁻ resulted in 8–60 % increase in Cd accumulation in shoots than the addition of SO₄ ²⁻ and NO₃ ⁻. The findings suggest that C. rossii is a promising candidate in phytoextraction of Cd-polluted soils with high salinity levels.
Show more [+] Less [-]Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn
2015
Zhang, Chengjun | Sale, Peter W. G. | Clark, Gary J | Liu, Wuxing | Doronila, Augustine I. | Kolev, Spas D. | Tang, Caixian
Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6–26.6 mg plant⁻¹ day⁻¹) and highest tolerance index (78–93 %), whilst Sedum “Autumn Joy” had the lowest relative growth rate (8.3–13.6 mg plant⁻¹ day⁻¹), and Crassula multicava showed the lowest tolerance indices (<50 %). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.
Show more [+] Less [-]