Refine search
Results 1-10 of 16
A coupled simulation-optimization approach for groundwater remediation design under uncertainty: An application to a petroleum-contaminated site Full text
2009
He, L. | Huang, G.H. | Lu, H.W.
This study provides a coupled simulation-optimization approach for optimal design of petroleum-contaminated groundwater remediation under uncertainty. Compared to the previous approaches, it has the advantages of: (1) addressing the stochasticity of the modeling parameters in simulating the flow and transport of NAPLs in groundwater, (2) providing a direct and response-rapid bridge between remediation strategies (pumping rates) and remediation performance (contaminant concentrations) through the created proxy models, (3) alleviating the computational cost in searching for optimal solutions, and (4) giving confidence levels for the obtained optimal remediation strategies. The approach is applied to a practical site in Canada for demonstrating its performance. The results show that mitigating the effects of uncertainty on optimal remediation strategies (through enhancing the confidence level) would lead to the rise of remediation cost due to the increase in the total pumping rate. This study provides a coupled simulation-optimization approach for optimal design of groundwater remediation under uncertainty.
Show more [+] Less [-]A simple chemical free arsenic removal method for community water supply – A case study from West Bengal, India Full text
2009
Sen Gupta, B. | Chatterjee, S. | Rott, U. | Kauffman, H. | Bandyopadhyay, A. | DeGroot, W. | Nag, N.K. | Carbonell-Barrachina, A.A. | Mukherjee, S.
This report describes a simple chemical free method that was successfully used by a team of European and Indian scientists (www.qub.ac.uk/tipot) to remove arsenic (As) from groundwater in a village in West Bengal, India. Six such plants are now in operation and are being used to supply water to the local population (www.insituarsenic.org). The study was conducted in Kasimpore, a village in North 24 Parganas District, approximately 25 km from Kolkata. In all cases, total As in treated water was less than the WHO guideline value of 10 μg L−1. The plant produces no sludge and the operation cost is 1.0 US$ per day for producing 2000 L of potable water. This work presents the chemical free arsenic removal method from groundwater and its successful implementation in West Bengal for community water supply.
Show more [+] Less [-]How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers Full text
2009
Lair, G.J. | Zehetner, F. | Fiebig, M. | Gerzabek, M.H. | Gestel, C.A.M van | Hein, T. | Hohensinner, S. | Hsu, P. | Jones, K.C. | Jordan, G. | Koelmans, A.A. | Poot, A. | Slijkerman, D.M.E. | Totsche, K.U. | Bondar-Kunze, E. | Barth, J.A.C.
In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded “AquaTerra” project (2004–2009), we analyze changes in the dynamics of European river–floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management. Human activities have changed the hydraulics and contaminant fate in river–floodplain ecosystems.
Show more [+] Less [-]Use of the antiozonant ethylenediurea (EDU) in Italy: Verification of the effects of ambient ozone on crop plants and trees and investigation of EDU's mode of action Full text
2009
Paoletti, Elena | Contran, Nicla | Manning, William J. | Ferrara, Anna M.
Twenty-four experiments where EDU was used to protect plants from ozone (O3) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O3-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (<2 h) uptaken and translocated to the leaf apoplast where it persisted long (>8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O3 exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted. EDU was successful as a tool in determining ozone effects on vegetation in Italy, but while progress was made, its mode of action remains unresolved.
Show more [+] Less [-]Adaptive Grid Modeling with Direct Sensitivity Method for Predicting the Air Quality Impacts of Biomass Burning Full text
2009
Unal, Alper
The objective of this study was to improve the ability to model the air quality impacts of biomass burning on the surrounding environment. The focus is on prescribed burning emissions from a military reservation, Fort Benning in Georgia, and their impact on local and regional air quality. The approach taken in this study is to utilize two new techniques recently developed: (1) adaptive grid modeling and (2) direct sensitivity analysis. An advanced air quality model was equipped with these techniques, and regional-scale air quality simulations were conducted. Grid adaptation reduces the grid sizes in areas that have rapid changes in concentration gradients; consequently, the results are much more accurate than those of traditional static grid models. Direct sensitivity analysis calculates the rate of change of concentrations with respect to emissions. The adaptive grid simulation estimated large variations in O₃ concentrations within 4 x 4-km² cells for which the static grid estimates a single average concentration. The differences between adaptive average and static grid values of O₃ sensitivities were more pronounced. The sensitivity of O₃ to fire is difficult to estimate using the brute-force method with coarse scale (4 x 4 km²) static grid models.
Show more [+] Less [-]An Analysis of the Indoor Air Quality and Mould Growth in a Multi-zone Building Full text
2009
Chowdhury, Ashfaque Ahmed | Rasul, M. G | Khan, M. M. K
The effects of poor indoor air quality and mould growth in working environment are major problems in built environment, and there is a need to look for improvement of the health, comfort and productivity of the building occupants. Airborne mould sampling studies were conducted in a reference building located in Rockhampton, Central Queensland, Australia. Both indoor culturable and mould spore levels were observed. It was found through the indoor-outdoor ratios of the species that indoor concentrations are mostly related to the outdoor mould levels. The moulds differ in their relative humidity and temperature requirements to support surface growth. Indoor humidity has a significant effect on occupants comfort, perceived air quality, occupants' health, building durability, emissions and energy efficiency. Practical hygrothermal simulation models are employed to analyse the combined heat and moisture behaviour within the built environment. A review of the current modelling options available to predict building performance based on energy and mass transport simulation is presented, and then a case study is presented with the assessment of indoor built environment to avoid mould problem.
Show more [+] Less [-]Textile Effluents Affected Seed Germination and Early Growth of Some Winter Vegetable Crops: A Case Study Full text
2009
Rehman, Abida | Bhatti, Haq Nawaz | Athar, Habib-ur-Rehman
In order to assess as to whether treated textile effluent could be safely used to irrigate some winter vegetables, growth room experiments were conducted. Varying levels of treated and untreated textile effluents were applied to germinating seeds of some winter vegetables and their effect was evaluated on germination and early growth stage using seed germination, growth, and biochemical attributes. From the results, it was obvious that textile effluent reduced seed germination and early growth of all vegetables. However, this effect was more pronounced at the highest concentration of textile effluent. Furthermore, treated textile effluent did not show any inhibitory effect on seed germination of all vegetables. Photosynthetic pigments such as chlorophyll a and b, and protein contents were higher in the leaves of all vegetable plants irrigated with treated textile effluent than those of supplied with untreated textile effluents. It has been observed that heavy metals were lower in concentration in treated textile effluent as compared with untreated textile effluent. However, germination and growth responses of all three vegetables were different to treated or untreated textile effluents. Furthermore, the Raphanus sativus ranked as tolerant followed by Brassica campastris and Brassica napus based on germination and growth responses. In conclusion, in view of shortage of water, textile effluent could safely be used for irrigation to vegetables after proper processing.
Show more [+] Less [-]Fluxes of Heavy Metals from a Highly Polluted Watershed During Flood Events: A Case Study of the Litavka River, Czech Republic Full text
2009
Žák, Karel | Rohovec, Jan | Navratil, Tomas
The Litavka River (length 56 km, watershed area 630 km², average flow at the outlet to the Berounka River 2.57 m³ s⁻¹) drains the historical mining, ore processing, and smelting region of Příbram. This Ag-Pb-Zn±Sb ore district (production from the thirteenth century to 1978, locally to 1980) is known for extensive heavy metal contamination. Recent contamination of the Litavka River system is mostly related to the erosion of contaminated soils and fluvial floodplains sediments, especially from a low-gradient river section located immediately below the ore district, where the fine-grained floodplain sediments are from 1.0 to 1.7 m thick. Radiocarbon accelerator mass spectrometry dating of charcoal fragments separated from one floodplain profile showed calibrated ¹⁴C age in the range AD 1220-1284 at a depth of 1.2 m below the surface, while depths of 0.4 and 0.8 m yielded ages in the range AD 1680-1939. Formation of this floodplain was related to disturbance of the river equilibrium resulting from deforestation and the influx of fine-grained material from ore processing, including historical failures of settling ponds. Fluxes of heavy metals during flood events in the Litavka River were studied 35 km downstream below the ore district. Metals are transported here mostly (more than 99% for Pb) in the form of suspended particulate matter (SPM), which at the outlet of the Litavka River contains 2,016 mg kg⁻¹ Zn, 918 mg kg⁻¹ Pb, and 25.5 mg kg⁻¹ Cd on average. During a snowmelt-related minor flood event between March 25 and 29, 2006 (peak flow 36.6 m³ s⁻¹), the river transported 2,400 tonnes of SPM during 4 days, containing 74 kg of Cd, 2,954 kg of Pb, and 5,811 kg of Zn. During larger floods (water flows above 55 m³ s⁻¹ have occurred here 27 times during the last 77 years), the contamination is more diluted by material eroded in the floodplain along the middle and lower river course.
Show more [+] Less [-]Filtered Stepwise Clustering Method for Predicting Fate of Contaminants in Groundwater Remediation Systems: A Case Study in Western Canada Full text
2009
Zou, Yun | Huang, Guo H. | Nie, Xianghui
This paper presents the development of a filtered stepwise clustering (FSC) method for facilitating the pump-and-treat (PAT) designs in groundwater remediation programs. To investigate the performances of different remediation strategies, a subsurface model is employed to simulate contaminant transport. Multivariate relationships between decision variables and selected modeling outputs are developed through the FSC method. Based on the developed statistical relationships, a set of possible outcomes for the remediation design can be presented; the solution space has been confined to a narrowed range. The proposed method can aid the PAT design by (a) quickly providing predicted outcomes given different remediation strategies and (b) directly locating the optimum remediation strategy for any outcome. The FSC method is examined through its application to a real-world aquifer remediation case in western Canada. The prediction results can help decision makers to evaluate the remediation design in an explicit way.
Show more [+] Less [-]A field survey--Staroe lake suffering from atmospheric deposition in the region north of the Arctic Circle Full text
2009
Kikuchi, Ryunosuke | Gorbacheva, Tamara T
Background, aim, and scope The Arctic holds large stores of minerals, and extracted materials are provided to the world's economy; in this sense, the Arctic issue associated with mining is not local but global. In a part of the Arctic region (the Kola Peninsula, 66-70° N and 28-41° E), metal levels are generally elevated in the lake sediment. There is a question as to what results in elevated metal levels--a natural process (naturally abundant minerals) or an anthropogenic process (mining and metallurgy). In terms of solving this question, Staroe lake located on the Kola Peninsula was researched as a case study. Materials and methods The following parameters were determined in relation with Staroe lake: (1) the current quality of the lake's water--each 1,000-ml sample was collected at a surface point and a deep point (near the bottom layer), and the collected samples were directly analyzed after filtration; (2) atmospheric bulk deposition--bulk deposition was collected using a set of three rainwater samplers near the lake. In addition, bulk deposition was collected in a background site (250 km to the southwest of the smelter complex) as a reference; and (3) sediment profile (plus principal component analysis)--lake-bottom sediment was collected by an open-gravimetric column sampler equipped with an automatic diaphragm. After collection, the sample columns were cut at a 1-cm interval for analysis. Eigenvalues and variances by factor were calculated from the correlation coefficients. Results The obtained data show that (1) naturally poor elements (Cu, Ni, Si, and SO₄ ²⁻) dominantly influence the lake's water quality; (2) they are transported from the anthropogenic sources to the study lake through the atmospheric pathway; (3) mainly the contents of Cu, Ni, Sr, and Ca have influenced the sediment quality since the 1950s, corresponding to the industrial movement; and (4) Cu, Ni, and Sr originate from an anthropogenic source (smelter), and Ca originates from both natural and anthropogenic sources. Discussion As compared with the Russian standard (San Pin 2.1.980-00), the contents of NO₃ ⁻ (50.3 ± 0.1 mg l⁻¹) and particulates (2.3 ± 0.2 mg l⁻¹) exceeded the standard levels (0.7 mg l⁻¹ NO₃ ⁻ and 45 mg l⁻¹ particulates); Staroe lake may be slightly contaminated. However, the contamination factor (comparison with the background data) implies that Staroe lake is considerably contaminated. There is a strong possibility that fine overburden detritus (<0.1 mm diameter) may be transported from an open pit to the study lake by natural forces such as wind. Although it is difficult to suppose that one factor dominantly affects the sediment quality, it follows from a factor analysis that factors 1 and 2 account for about 70% of the total variance: Factor 1 is the most dominant, and factor 2 is the second most dominant in the variability of sediment quality. It is considered that Cu, Sr, and Ni in factor 1 originate from anthropogenic sources because they are poor in sediment rocks. Conclusions The field survey conducted in Staroe lake can give the following answers to the key objectives: (1) The present water quality is affected by Cu, Ni, Si, and SO₄ ²⁻ in light of the contamination factor, and these elements originate from anthropogenic sources (the smelter and the open pit) and are transported to the lake through the atmospheric pathway; (2) the sediment profile and statistic analysis show that the lake quality has been influenced by deposition of metals since the 1950s; and (3) Cu, Ni, Sr, and Ca have influenced the sediment quality in light of the most dominant factor--Cu, Ni, and Sr originate from an anthropogenic source, whereas Ca comes from both natural and anthropogenic sources. Recommendations and perspectives The presented lake survey shows that the dispersion of human-related pollutants via the atmospheric pathway takes place in the Arctic region. If the current pollution continues without countermeasures, the high-latitude environment may lose its original characteristics; hence, this subject is important when considering how to implement a wide range of environmental protection measures in the Arctic.
Show more [+] Less [-]