Refine search
Results 1-9 of 9
Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
Show more [+] Less [-]Heavy metals uptake and its impact on the growth dynamics of the riparian shrub Ricinus communis L. along Egyptian heterogenic habitats
2021
Galal, Tarek M. | Essa, Basma | Al-Yasi, Hatim
Heavy metals are well known for their toxicity and become significant environmental pollution with a continually rising technology and public outcry to ensure the safest and healthiest environment. The present study aims to investigate the uptake capability of heavy metals and its impact on the growth dynamics of Ricinus communis L. (castor bean), along various habitats in Qalyubia Province, Egypt. Three composite plants and soil samples were collected from four different habitats: urban (residential area), canal banks, field edges, and drain banks. The samples were analyzed for nutrients and heavy metals. At the same time, forty quadrats (5 × 5 m) were selected to represent the micro-variations of castor bean in the selected habitats to determine its growth criteria and normalized vegetation index (NDVI). The lowest size index, volume, and number of leaves of castor bean were recorded along canal banks and they were characterized by high soil heavy metal concentration, especially Zn, Cu, and Ni, while the highest values were recorded along field edges with lower heavy metal concentration. Moreover, the NDVI indicated that castor bean from most studied habitats, except field edges, was healthy population. This study revealed that the leaves collected from all habitats were considered to be toxic with Cu. The bioconcentration factor (BF) of the investigated heavy metals was greater than 1. The BF order for heavy metals uptake by castor bean leaves was Fe > Ni > Mn > Cu > Zn. Consequently, the species selected in the present study can be used as a biomonitor of these heavy metal polluted soils. Moreover, it could be used as a phytoremediator, taken into consideration its use in all medicinal purposes.
Show more [+] Less [-]Availability and Accumulation of Arsenic in Oilseeds Grown in Contaminated Soils
2012
Melo, Évio E. C. | Guilherme, Luiz R. G. | Nascimento, Clistenes W. A. | Penha, H. G. V.
Arsenic occurs in the earth's crust in various chemical forms as a result of both natural and anthropogenic sources. Soil chemical extractions may help understand As availability, as well as the possibility of As entry into the food chain. Phytoextraction has been proposed as a technology for remediation of As-contaminated soils. The study was carried out to assess the bioavailability of As by extractants and to compare the performance of castor bean and sunflower for As removal from soils. Two soils were contaminated with Na2HAsO4.7H2O adding 35 and 150 mg As dm−3 soil. Arsenic availability was assessed using the following extractants: tri-distilled water, ammonium sulfate, ammonium phosphate, ammonium oxalateâ+âoxalic acid, organic acids mixture, Mehlich-1, and United States Environmental Protection Agency 3051. The roots and shoots of 35-day-old plants were collected and dry matter yield as well as As concentration were determined. The accumulation of As in shoot was also calculated in order to evaluate the plants potential for As phytoextraction. The extractants tested were efficient to assess the concentration of available As in soil. Addition of As to the soils did not cause severe toxicity in plants, although the dose 150 mg As dm−3 soil decreased shoot and root yield in both species. Castor bean was less sensitive to As than sunflower, but none of the species had hyperaccumulation characteristics. These species can be used for revegetation of areas contaminated with As up to safe limit of 150 mg As dm−3 soil, as proposed by CONAMA for industrial areas in Brazil.
Show more [+] Less [-]Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.)
2020
Zhou, Xiupei | Huang, Guoyong | Liang, Ding | Liu, Yonghong | Yao, Shiyuan | Ali, Umeed | Hu, Hongqing
Fertilization is an important agricultural strategy for enhancing the efficiency of phytoremediation in copper (Cu)-contaminated soils. In this study, the effects of nitrogen (N) forms, including ammonium (NH₄⁺-N) and nitrate (NO₃⁻-N), on the growth, translocation, and accumulation of Cu in the tissues of Ricinus communis L. were investigated in pot and hydroponic experiments. The results demonstrated that higher biomass and N contents in plants were obtained when N was supplied as NO₃⁻-N rather than NH₄⁺-N. Application of N increased the Cu content in the roots of R. communis, with a higher content after NH₄⁺-N (53.10–64.20 mg kg⁻¹) than NO₃⁻-N (37.62–53.75 mg kg⁻¹) treatment. On the contrary, the levels of Cu translocation factors were much higher in NO₃⁻-fed plants (0.34–0.45) than in NH₄⁺-fed plants (0.28–0.38). The suggested amount of N for fertilizer application is 225 kg hm⁻², which resulted in the highest Cu content in R. communis and optimal plant growth. As the main Cu-binding site, root cell walls accumulated less Cu in plants treated with NH₄⁺-N compared with NO₃⁻-N. Additionally, NH₄⁺-N induced a higher malondialdehyde content and more severe root damage compared with NO₃⁻-N. In the leaf, a larger number of black granules, which could be protein and starch grains involved in the detoxification of Cu in R. communis, were present after NH₄⁺-N than NO₃⁻-N treatment. These results illustrate that N forms are especially important for Cu translocation and accumulation and that immobilization and transformation of Cu in roots were improved more by NH₄⁺-N than NO₃⁻-N. In conclusion, N fertilizers containing the appropriate forms applied at suitable rates may enhance the biomass and Cu accumulation of R. communis and thereby the remediation efficiency of Cu-contaminated soils.
Show more [+] Less [-]Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology
2013
Yasur, Jyothsna | Rani, Pathipati Usha
Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L(-1), while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.
Show more [+] Less [-]Seeds’ physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis)
2014
Alves Silva, Giovanni Eustáquio | Toledo Ramos, Flávia | de Faria, Ana Paula | Costa França, Marcel Giovanni
We determined the length, volume, dry biomass, and density in seeds of five castor bean cultivars and verified notable physicochemical trait differences. Seeds were then subjected to different toxic aluminum (Al) concentrations to evaluate germination, relative root elongation, and the role of root apices’ rhizosphere mucilage layer. Seeds’ physicochemical traits were associated with Al toxicity responses, and the absence of Al in cotyledons near to the embryo was revealed by Al-hematoxylin staining, indicating that Al did not induce significant germination reduction rates between cultivars. However, in the more sensitive cultivar, Al was found around the embryo, contributing to subsequent growth inhibition. After this, to investigate the role of mucilage in Al tolerance, an assay was conducted using NH₄Cl to remove root mucilage before or after exposure to different Al concentrations. Sequentially, the roots were stained with hematoxylin and a quantitative analysis of staining intensity was obtained. These results revealed the significant contribution of the mucilage layer to Al toxicity responses in castor bean seedlings. Root growth elongation under Al toxicity confirmed the role of the mucilage layer, which jointly indicated the differential Al tolerance between cultivars and an efficient Al-exclusion mechanism in the tolerant cultivar.
Show more [+] Less [-]Absorption, translocation, and detoxification of Cd in two different castor bean (Ricinus communis L.) cultivars
2018
Ye, Wenling | Guo, Guifeng | Wu, Fan | Fan, Ting | Lu, Hongjuan | Chen, Haiyan | Li, Xuede | Ma, Youhua
Cadmium (Cd) is considered to be the most phytotoxic heavy metal pollutant. The selection of castor bean cultivars with Cd tolerance and the exploration of the physiological mechanisms involved in Cd tolerance are critical steps for improving phytoremediation performance. In this study, a hydroponic experiment was used to investigate variations in Cd transportation, chelation, and subcellular distribution in two different castor bean cultivars, namely JX-22 and ZB-9. Both cultivars had high tolerance index scores, indicating that both cultivars were tolerant to Cd. The findings of the present study indicate that Cd is significantly more mobile in JX-22 than in ZB-9 during xylem and phloem transportation, resulting in the accumulation of Cd in the shoots of JX-22 was 7.67 times that in ZB-9. Subcellular distribution assessment verified that more Cd was bound to the biologically detoxified metal fractions than the metal sensitive fractions in JX-22. The contents of the non-protein thiol pool and glutathione in the leaves were higher in JX-22 than ZB-9 when exposed to Cd. These results indicate that JX-22 has a greater ability to accumulate Cd, and well-coordinated physiological changes in JX-22 afford greater Cd tolerance in comparison to ZB-9 under Cd exposure, indicating that JX-22 is suitable for use in the remediation of Cd-contaminated soils.
Show more [+] Less [-]Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.)
2018
Huang, Guoyong | Rizwan, MuhammadShahid | Ren, Chao | Guo, Guangguang | Fu, Qingling | Zhu, Jun | Hu, Hongqing
Application of fertilizers to supply appropriate nutrients has become an essential agricultural strategy for enhancing the efficiency of phytoremediation in heavy metal contaminated soils. The present study was conducted to investigate the beneficial effects of three types of phosphate fertilizers (i.e., oxalic acid-activated phosphate rock (APR), Ca(H₂PO₄)₂, and NaH₂PO₄) in the range of 0–600 mg P kg⁻¹ soil, on castor bean growth, antioxidants [antioxidative enzymes and glutathione (GSH)], and Cu uptake. Results showed that with the addition of phosphorus fertilizers, the dry weight of castor bean and the Cu concentration in roots increased significantly, resulting in increased Cu extraction. The phosphorus concentration in both shoots and roots was increased as compared with the control, and the Ca(H₂PO₄)₂ treatment had the greatest effect. Application of APR, NaH₂PO₄, and Ca(H₂PO₄)₂ reduced the malondialdehyde (MDA) content, and the activity of the two antioxidant enzymes superoxide dismustase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) in the leaves of castor bean. GSH concentration in leaves increased with the increasing levels of phosphorus applied to soil as well as the accumulation of phosphorus in shoots, compared to the control. These results demonstrated that the addition of phosphorus fertilizers can enhance the resistance of castor bean to Cu and increase the Cu extraction efficiency of the plant from contaminated soils.
Show more [+] Less [-]Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil
2017
Boda, RaviKiran | Majeti, NarasimhaVara Prasad | Suthari, Sateesh
Ricinus communis L. (castor bean or castor oil plant) was found growing on metal-contaminated sites (4) of peri-urban Greater Hyderabad comprises of erstwhile industrial areas viz Bollaram, Patancheru, Bharatnagar, and Kattedan industrial areas. During 2013–2017, about 60 research papers have appeared focusing the role of castor bean in phytoremediation of co-contaminated soils, co-generation of biomaterials, and environmental cleanup, as bioenergy crop and sustainable development. The present study is focused on its use as a multipurpose phytoremediation crop for phytostabilization and revegetation of waste disposed peri-urban contaminated soils. To determine the plant tolerance level, metal accumulation, chlorophyll, protein, proline, lipid peroxidation, oil content, and soil properties were characterized. It was noticed that the castor plant and soils have high concentration of metals such as cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), and zinc (Zn). The soils have high phosphorous (P), adequate nitrogen (N), and low concentration of potassium (K). Iron (Fe) concentrations ranged from1672±50.91 to 2166±155.78 mg kg⁻¹ in the soil. The trend of metal accumulation Fe>Zn>Mn>Pb>Cd was found in different plant parts at polluted sites. The translocation of Cd and Pb showed values more than one in industrial areas viz Bollaram, Kattedan, and Bharatnagar indicating the plants resistance to metal toxicity. Chlorophyll and protein content reduced while proline and malondialdehyde increased due to its tolerance level under metal exposure. The content of ricinoleic acid was higher, and the fatty acids composition of polluted areas was almost similar to that of the control area. Thus, R. communis L. can be employed for reclamation of heavy metal contaminated soils.
Show more [+] Less [-]