Refine search
Results 1-10 of 356
Surface water quality, public health, and ecological risks in Bangladesh—a systematic review and meta-analysis over the last two decades Full text
2023
Bilal, H. | Li, X. | Iqbal, Muhammad Shahid | Mu, Y. | Tulcan, R. X. S. | Ghufran, M. A.
Surface water quality, public health, and ecological risks in Bangladesh—a systematic review and meta-analysis over the last two decades Full text
2023
Bilal, H. | Li, X. | Iqbal, Muhammad Shahid | Mu, Y. | Tulcan, R. X. S. | Ghufran, M. A.
Water quality has recently emerged as one of the utmost severe ecological problems being faced by the developing countries all over the world, and Bangladesh is no exception. Both surface and groundwater sources contain different contaminants, which lead to numerous deaths due to water-borne diseases, particularly among children. This study presents one of the most comprehensive reviews on the current status of water quality in Bangladesh with a special emphasis on both conventional pollutants and emerging contaminants. Data show that urban rivers in Bangladesh are in a critical condition, especially Korotoa, Teesta, Rupsha, Pashur, and Padma. The Buriganga River and few locations in the Turag, Balu, Sitalakhya, and Karnaphuli rivers have dissolvable oxygen (DO) levels of almost zero. Many waterways contain traces of NO3, NO2, and PO4-3 pollutants. The majority of the rivers in Bangladesh also have Zn, Cu, Fe, Pb, Cd, Ni, Mn, As, and Cr concentrations that exceed the WHO permissible limits for safe drinking water, while their metal concentrations exceed the safety threshold for irrigation. Mercury poses the greatest hazard with 90.91% of the samples falling into the highest risk category. Mercury is followed by zinc 57.53% and copper 29.16% in terms of the dangers they pose to public health and the ecosystem. Results show that a considerable percentage of the population is at risk, being exposed to contaminated water. Despite hundreds of cryptosporidiosis cases reported, fecal contamination, i.e., Cryptosporidium, is totally ignored and need serious considerations to be regularly monitored in source water.
Show more [+] Less [-]Surface water quality, public health, and ecological risks in Bangladesh—a systematic review and meta-analysis over the last two decades Full text
Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms Full text
2022
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L⁻¹. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
Show more [+] Less [-]Ionic liquid-biosurfactant blends as effective dispersants for oil spills: Effect of carbon chain length and degree of saturation Full text
2021
Hassan Shah, Mansoor Ul | Bhaskar Reddy, Ambavaram Vijaya | Suzana Yusup, | Goto, Masahiro | Moniruzzaman, Muhammad
The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) biosurfactant individually with choline myristate and choline oleate ionic liquid surfactants. The aggregation behavior of resulted surfactant blends and their dispersion effectiveness was investigated using the baffled flask test. The introduction of long hydrophobic alkyl chain with unsaturation (attached to choline cation) provided synergistic interactions between the binary surfactant mixtures. The maximum dispersion effectiveness was found to be 78.23% for 80:20 (w/w) lactonic sophorolipid-choline myristate blends, and 81.15% for 70:30 (w/w) lactonic sophorolipid-choline oleate blends at the dispersant-to-oil ratio of 1:25 (v/v). The high dispersion effectiveness of lactonic sophorolipid-choline oleate between two developed blends is attributed to the stronger synergistic interactions between surfactants and slower desorption rate of blend from oil-water interface. The distribution of dispersed oil droplets at several DOR were evaluated and it was observed that oil droplets become smaller with increasing DOR. In addition, the acute toxicity analysis of developed formulations against zebra fish (Danio rerio) confirmed their non-toxic behavior with LC₅₀ values higher than 400 ppm after 96 h. Overall, the proposed new blends/formulations could effectively substitute the toxic and unsafe chemical dispersants.
Show more [+] Less [-]Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland Full text
2020
Yuan, Kai | Wang, Changrong | Zhang, Changbo | Huang, Yongchun | Wang, Peipei | Liu, Zhongqi
The accumulation of cadmium (Cd) in rice grains is closely associated with the content of mineral nutrients and amino acid metabolism, but the causal link among them is unclear. Profiles of amino acids (AAs) and quantities of essential nutrients in grains from early and late rice cultivars grown at four sites with different Cd levels were analyzed in the present study. Hazard quotients (HQs) for consumers by intake of rice from late cultivars were much higher than that from early cultivars at sites with soil Cd content of 0.25, 0.61 and 0.84 mg kg⁻¹. Cadmium accumulation in grains resulted in a sharp reduction of total essential AAs and non-essential AAs in both early and late rice cultivars. High-Cd-accumulating (HCA) cultivars had significantly higher level of glutamate (Glu) than low-Cd-accumulating (LCA) cultivars when rice Cd content was less than 0.20 mg kg⁻¹. However, Glu level in grains dramatically declined with the accumulation of Cd, which subsequently leaded to the reduction of other AAs. Cadmium content was well predicted by five amino acids (i.e., Glu, Alanine, Phenylalanine, Glycine and Threonine) or four essential elements (Ca, Fe, Mn and Zn) when rice Cd was less than 0.80 mg kg⁻¹. Amino acids played more important roles than nutrients in Cd accumulation. When Cd content was in the range of 0.40–1.16 mg kg⁻¹, the Mn content in rice increased significantly with the increase of Cd content, while the Glu content dropped down synchronously. Remarkably, the ratio between Mn and Glu displayed the highest direct path coefficient on Cd accumulation than any single cation or amino acid. These results indicate that high capacity in synthesizing Glu and concentrating Mn is the determinant factor for Cd accumulation in rice grains, and abundant Glu in aleurone layer may alleviate Cd toxicity by forming Glu-Cd complex.
Show more [+] Less [-]Mn2+ effect on manganese oxides (MnOx) nanoparticles aggregation in solution: Chemical adsorption and cation bridging Full text
2020
Cheng, Haijun | Yang, Tao | Jiang, Jin | Lu, Xiaohui | Wang, Panxin | Ma, Jun
Manganese oxides (MnOₓ) and Mn²⁺ usually co-exist in the natural environment, as well as in water treatments for Mn²⁺ removal. Therefore, it is necessary to investigate the influence of Mn²⁺ on the stability of MnOₓ nanoparticles, as it is vital to their fate and reactivity. In this study, we used the time-resolved dynamic light scattering technique to study the influence of Mn²⁺ on the initial aggregation kinetics of MnOₓ nanoparticles. The results show that Mn²⁺ was highly efficient in destabilizing MnOₓ nanoparticles. The critical coagulation concentration ratio of Mn²⁺ (0.3 mM) to Na⁺ (30 mM) was 2⁻⁶.⁶⁴, which is beyond the ratio range indicated by the Schulze-Hardy rule. This is due to the coordination bond formed between Mn²⁺ and the surface O of MnOₓ, which could efficiently decrease the negative surface charge of MnOₓ. As a result, in the co-presence of Mn²⁺ and Na⁺, a small amount of Mn²⁺ (5 μM) could efficiently neutralize the negative charge of MnOₓ, thereby decreasing the amount of Na⁺, which mainly destabilized nanoparticles through electric double-layer compression, required to initiate aggregation. Further, Mn²⁺ behaved as a cation bridge linking both the negatively charged MnOₓ and humic acid, thereby increasing the stability of the MnOₓ nanoparticles as a result of the steric repulsion of the adsorbed humic acid. The results of this study enhance the understanding of the stability of the MnOₓ nanoparticles in the natural environment, as well as in water treatments.
Show more [+] Less [-]Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb–Zn mining Full text
2020
Zhang, Yan | Wang, Xuemei | Ji, Hongbing
Sawdust wastes were used as precursors to prepare adsorbents by combustion and pyrolysis for experimental and mechanism studies and determine the potential of biomass extracted from agro-industrial residues for Pb-polluted soil remediation. Pot experiments were conducted on contaminated soils near Pb–Zn mining with sawdust ash (SA) and sawdust biochar (SB) in different proportions and dosage ratios. Studies have indicated that the application of biomass materials can enhance the adsorption, complexation and precipitation of Pb cations in soil and reduce the mobility of Pb. The concentrations of SPLP-Pb and DTPA-extractable Pb in amended soils were the lowest under 1% 1:2 and 5% 1:1 treatment, respectively. Results of fraction extraction and XANES analysis showed that the materials change the main forms of Pb in soil. Moreover, the binding behavior of Pb with organic matter increases the proportion of Pb (Ac)₂, leading to the transformation of high toxicity Pb-compounds into precipitates and complexes. The remediation methods of 2% 1:2 and 5% 1:2 were better than those of other methods in stabilizing Pb in soil. This study indicated that heat-treated sawdust can be used for Pb-polluted soil remediation, which is a type of environmental remediation measure with considerable ecological potential.
Show more [+] Less [-]Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium Full text
2020
Ma, Pengkun | Chen, Wei
The release of fine particles from biochar materials applied in the environment may have important environmental implications, such as mobilization of environmental contaminants. In natural environments biochar fine particles can undergo various transformation processes, which may change their surface chemistry and consequently, the mobility of the particles. Here, we show that sulfide reduction can significantly alter the transport of wheat-straw- and pine-wood-derived biochar fine particles in saturated porous media. Counterintuitively, the sulfide-reduced biochar particles exhibited greater mobility in artificial groundwater than their non-reduced counterparts, even though reduction led to decrease of surface charge negativity and increase of hydrophobicity (from the removal of surface O-functional groups), both should favor particle deposition, as predicted based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. Using transport experiments conducted in single-cation background solutions containing K⁺, Mg²⁺ or Ca²⁺ under different pH conditions, we show that the surprisingly greater mobility of sulfide-reduced biochar particles was attributable to the removal of surface carboxyl groups during reduction, as this markedly alleviated particle deposition through cation bridging, wherein Ca²⁺ acted as the bridging agent in linking the surface O-functional groups of biochar particles and quartz sand. These findings show the critical roles of surface properties in dictating the mobility of biochar fine particles and call for further understanding of their transport properties, which apparently cannot be simply extrapolated based on the findings of other (engineered) carbonaceous nanomaterials.
Show more [+] Less [-]Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: Batch and column scale studies Full text
2020
Imran, Muhammad | Haq Khan, Zia Ul | Iqbal, Jibran | Shah, Noor Samad | Muzammil, Saima | Ali, Shafaqat | Muhammad, Nawshad | Aziz, Arwa | Murtaza, Behzad | Naeem, Muhammad Asif | Amjad, Muhammad | Shāhid, Muḥammad | Z̲ākir ʻAlī, | Rizwan, Muhammad
Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: Batch and column scale studies Full text
2020
Imran, Muhammad | Haq Khan, Zia Ul | Iqbal, Jibran | Shah, Noor Samad | Muzammil, Saima | Ali, Shafaqat | Muhammad, Nawshad | Aziz, Arwa | Murtaza, Behzad | Naeem, Muhammad Asif | Amjad, Muhammad | Shāhid, Muḥammad | Z̲ākir ʻAlī, | Rizwan, Muhammad
The present study is the first attempt to evaluate the pilot and batch scale adsorption potential of siltstone (SS) and its nanocomposites with biochar (EDB/SS), magnetite nanoparticles (MNPs/SS) and MNPs/EDB/SS for Cd removal from contaminated water. The SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were characterized with FTIR, XRD, BET, SEM, TEM, TGA and point of zero charge (PZC). The effects of adsorbent dosage, contact time, initial Cd concentration, pH and presence of competing ions were evaluated on the Cd removal and its adsorption. The order for Cd removal was: MNPs/EDB/SS > MNPs/SS > EDB/SS > SS (95.86–99.72% > 93.10–98.5% > 89.66.98–98.40% > 74.90–90%). Column scale experiments yielded maximum retention (95%) of Cd even after 2 h of injection at 100 mg Cd/L. The exhausted SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were reused without losing significant adsorption potential. Similarly, maximum Cd adsorption (117.38 mg/g) was obtained with MNPs/EDB/SS at dose 1.0 g/L. The results revealed that coexisting cations reduced the Cd removal due to competition with Cd ions. The experimental results were better explained with Freundlich isotherm model and pseudo 2nd order kinetic models. The results revealed that SS and its composites can be used efficiently for the removal of Cd from contaminated water.
Show more [+] Less [-]Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: Batch and column scale studies Full text
Imran, Muhammad | Haq Khan, Zia Ul | Iqbal, Jibran | Shah, Noor Samad | Muzammil, Saima | Ali, Shafaqat | Muhammad, Nawshad | Aziz, Arwa | Murtaza, Behzad | Naeem, Muhammad Asif | Amjad, Muhammad | Shahid, Muhammad | Zakir, Ali | Rizwan, Muhammad
© 2020 Elsevier Ltd The present study is the first attempt to evaluate the pilot and batch scale adsorption potential of siltstone (SS) and its nanocomposites with biochar (EDB/SS), magnetite nanoparticles (MNPs/SS) and MNPs/EDB/SS for Cd removal from contaminated water. The SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were characterized with FTIR, XRD, BET, SEM, TEM, TGA and point of zero charge (PZC). The effects of adsorbent dosage, contact time, initial Cd concentration, pH and presence of competing ions were evaluated on the Cd removal and its adsorption. The order for Cd removal was: MNPs/EDB/SS > MNPs/SS > EDB/SS > SS (95.86–99.72% > 93.10–98.5% > 89.66.98–98.40% > 74.90–90%). Column scale experiments yielded maximum retention (95%) of Cd even after 2 h of injection at 100 mg Cd/L. The exhausted SS, EDB/SS, MNPs/SS and MNPs/EDB/SS were reused without losing significant adsorption potential. Similarly, maximum Cd adsorption (117.38 mg/g) was obtained with MNPs/EDB/SS at dose 1.0 g/L. The results revealed that coexisting cations reduced the Cd removal due to competition with Cd ions. The experimental results were better explained with Freundlich isotherm model and pseudo 2nd order kinetic models. The results revealed that SS and its composites can be used efficiently for the removal of Cd from contaminated water.
Show more [+] Less [-]Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation Full text
2019
Xia, Tianjiao | Ma, Pengkun | Qi, Yu | Zhu, Lingyan | Qi, Zhichong | Chen, Wei
The increasing production and use of graphene-based nanomaterials (e.g., graphene oxide (GO) and reduced graphene oxide (RGO)) will lead to their environmental release. To date, transport of RGOs in saturated porous media is poorly understood. Here, we examined the transport behaviors of three RGO materials obtained by reducing a GO product with commonly used reducing agents – N₂H₄, NaBH₄ and L-ascorbic acid (referred to as N₂H₄-RGO, NaBH₄-RGO and VC-RGO, respectively). When the dominant background cation was Na⁺, K⁺ or Mg²⁺, the mobility of the RGOs and GO in saturated quartz sand correlated well with their surface C/O ratio. Interestingly, the lower mobility of the more reduced materials (the ones with higher C/O values) was not only the results of their less negative surface charges and larger particle sizes, but also the outcome of their greater hydrophobicity, in line with the calculated extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) profiles. Counterintuitively, when the background cation was Ca²⁺, the least reduced material among the three RGOs, VC-RGO, exhibited the lowest mobility. Analysis of electrophoretic and aggregation properties, as well as pH-effect experiments, indicated that the surprisingly low mobility of VC-RGO was attributable to the strong cation-bridging effect (primarily Ca²⁺-bridging between RGO and quartz sand) associated with this material, as VC-RGO contained the highest amount of surface carboxyl group (a strong metal-binding moiety). Notably, enhanced attachment (due to increased hydrophobic effect and cation-bridging) and particle aggregation appeared to work synergistically to increase RGO retention, as the attachment of large RGO aggregates significantly enhanced particle straining by narrowing the flow path. These observations reveal a largely overlooked link between the mobility of graphene-based materials and their key physicochemical properties.
Show more [+] Less [-]The effect of major cations on the toxicity of cadmium to Folsomia candida in a sand-solution medium analyzed by biotic ligand modeling Full text
2019
Ardestani, Masoud M. | van Gestel, Cornelis A.M.
The aim of this study was to assess the effect of major cations (Ca²⁺, Mg²⁺, Na⁺, K⁺, and H⁺) on cadmium toxicity to the springtail Folsomia candida. Survival of the animals was determined after seven days exposure to different cadmium concentrations in an inert sand-solution medium, in different experimental setups with modification of the cation concentrations. Among the cations tested, Ca²⁺ and Mg²⁺ had protective effects on the toxicity of cadmium to the springtails while Na⁺, K⁺, and H⁺ showed less competition with free cadmium ions for binding to the uptake sites of the collembolans. Toxicity predicted with a biotic ligand model agreed well with the observed values. Calculated conditional binding constants and the fraction of biotic ligands occupied by cadmium to show 50% effects were similar to values reported in the literature. The results emphasize the important role of solution chemistry in determining metal toxicity to soil invertebrates.
Show more [+] Less [-]