Refine search
Results 1-10 of 105
Biodegradation of paraquat by Pseudomonas putida and Bacillus subtilis immobilized on ceramic with supplemented wastewater sludge Full text
2021
Jindakaraked, Manee | Khan, Eakalak | Kajitvichyanukul, Puangrat
This work aimed to study the performance of paraquat removal by cell-immobilized ceramics. Two strains of paraquat degrading bacteria, Pseudomonas putida and Bacillus subtilis, were separately immobilized on the ceramic with and without wastewater sludge addition. Results showed that the ceramic surface with sludge has more functional groups and a more highly negative charge on the surface than the original ceramic. The ceramic with sludge had 2-3-fold of the immobilized cells higher than that of the control (without sludge) and less leaching of the immobilized cells. The sludge addition at 20% (w/w) to the ceramic provided the highest cell adhesion for both P. putida and B. subtilis. The paraquat removal efficiencies were higher than 98%, while the control ceramic could remove only 77 ± 1.2%. The immobilized cells on ceramic with sludge provided a significant degree of dissolved organic nitrogen reduction (82%) during the paraquat removal. Most organic nitrogen in paraquat was biologically mineralized (ammonified). Findings from this work suggest the superiority of ceramic with sludge in mineralizing organic nitrogen associated with paraquat.
Show more [+] Less [-]Field-based measurements of major air pollutant emissions from typical porcelain kiln in China Full text
2021
Du, Wei | Wang, Jinze | Chen, Yuanchen | Zhuo, Shaojie | Wu, Shuiping | Liu, Weijian | Lin, Nan | Shen, Guofeng | Tao, Shu
China has been famous for its porcelains for millennia, and the combustion processes of porcelain production emit substantial amounts of air pollutants, which have not been well understood. This study provided firsthand data of air pollutant emissions from biomass porcelain kilns. The emission factor of PM₂.₅ was 0.95 ± 1.23 g/kg during the entire combustion cycle, lower than that of biomass burning in residential stoves and coal burning in brick kilns, attributed to the removal effects of the long-distance transport in dragon kilns. The temporal trend of particle pollutants, including particulate matters (PMs) and particulate polycyclic aromatic hydrocarbons (PAHs) (low at ignition phase and high at the end) again indicated the removal effects of the special structure, while gaseous pollutants, such as gaseous PAHs, exhibited the opposite result. The GWC₁₀₀ was estimated as 1.4 × 10⁶ and 0.5 × 10⁶ kg CO₂e/yr for the scenarios in which 50% and 100% of the wood was renewable, respectively. The GWC₁₀₀ of dragon kilns is nearly equal to that of 745 households using wood-fueled stoves. These results indicate the necessity of pollution controls for biomass porcelain kilns to estimate the emission inventory and climate change.
Show more [+] Less [-]Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments Full text
2021
Di Cesare, Andrea | Pinnell, Lee J. | Brambilla, Diego | Elli, Giulia | Sabatino, Raffaella | Sathicq, María B. | Corno, Gianluca | O'Donnell, Colin | Turner, Jeffrey W.
The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Biofilms fouling ceramic, polyethylene terephthalate (PET), and polyhydroxyalkanoate (PHA) were investigated by shotgun metagenomic sequencing. Four ARG groups were more abundant in PHA: trimethoprim resistance (TMP), multidrug resistance (MDR), macrolide-lincosamide-streptogramin resistance (MLS), and polymyxin resistance (PMR). One MRG group was more abundant in PHA: multimetal resistance (MMR). The relative abundance of ARGs and MRGs were strongly correlated based on a Mantel test between the Bray-Curtis dissimilarity matrices (R = 0.97, p < 0.05) and a Pearson's analysis (R = 0.96, p < 0.05). ARGs were detected in more than 40% of the 57 metagenome-assembled genomes (MAGs) while MRGs were detected in more than 90% of the MAGs. Further investigation (e.g., culturing, genome sequencing, antibiotic susceptibility testing) revealed that PHA biofilms were colonized by hemolytic Bacillus cereus group bacteria that were resistant to beta-lactams, vancomycin, and bacitracin. Taken together, our findings indicate that bioplastic, like conventional petroleum-based plastic, is a reservoir for resistance genes and a potential vector for antibiotic-resistant bacteria in coastal marine sediments.
Show more [+] Less [-]Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea Full text
2020
Zheng, Wenkui | Wan, Yongshan | Li, Yuncong | Liu, Zhiguang | Chen, Jianqiu | Zhou, Hongyin | Gao, Yongxiang | Chen, Baocheng | Zhang, Min
Evaluation of the effectiveness of best management practices for reducing nitrate leaching in agricultural systems requires detailed water and nitrogen (N) budgets. A 3-year field experiment using 15 auto-weighing lysimeters was set up to quantify nitrate leaching, crop evapotranspiration (ET), and N and water use efficiencies within an intensive wheat-maize rotation system in the Northern China Plain. The lysimeter consists mainly of the following: (1) high-resolution weighing cells; (2) ceramic solution samplers for soil solutions collection; and (3) circular stainless steel leaching trays for collecting seepage water. Two N fertilizer types were applied at two rates (150 and 225 kg N hm⁻² for each crop) with no-N applied as the control. The N fertilizer types were monotypic un-coated urea and a blend product with controlled-release urea (CRU) and un-coated urea. The results indicate that when compared with un-coated urea at the same application rate, the blend product greatly improved water and N use efficiencies with significant increase in yields and crop ET as well as reduction of nitrate accumulation and leaching in the soil profile (p < 0.05). This was mostly because the blend product consistently supplied N to meet crop demands over the entire growth season. The study implied that effective best management practices to control nitrate leaching should be based on technically sound fertilization and irrigation schemes in terms of timing, rate, and fertilizer type to suit site specific conditions.
Show more [+] Less [-]Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment Full text
2019
Beni, Ali Aghababai | Esmaeili, Akbar
A biofilm reactor was designed with flat ceramic substrates to remove Co(II), Ni(II) and Zn(II) from industrial wastewater. The ceramics were made of clay and nano-rubber with high mechanical resistance. The surface of the ceramic substrate was modified with neutral fiber and nano-hydroxyapatite. A uniform and stable biofilm mass of 320 g with 2 mm of thickness was produced on the modified ceramic after 3 d. The micro-organisms were identified in the biofilm by polymerase chain reaction (PCR) method. Functional groups of biofilms were identified with a Fourier transform infrared spectrometer (FT-IR). Experiments were designed by central composite design (CCD) using the responsive surface method (RSM). The biosorption process was optimized at pH = 5.8, temperature = 22 °C, feed flux of heavy metal wastewater = 225 ml, substrate flow = 30 ml, and retention time = 7.825 h. The kinetic data was analyzed by pseudo first-order and pseudo second-order kinetic models. Isotherm models and thermodynamic parameters were applied to describe the biosorption equilibrium data of the metal ions on the biofilm-ceramic. The maximum biosorption efficiency and capacity of heavy metal ions were about 72% and 57.21 mg, respectively.
Show more [+] Less [-]Risk of breast cancer and residential proximity to industrial installations: New findings from a multicase-control study (MCC-Spain) Full text
2018
García-Pérez, Javier | Lope, Virginia | Pérez-Gómez, Beatriz | Molina, Antonio José | Tardón, Adonina | Díaz Santos, María Angustias | Ardanaz, Eva | O'Callaghan-Gordo, Cristina | Altzibar, Jone M. | Gómez Acebo, Inés | Moreno, Víctor | Peiró, Rosana | Marcos-Gragera, Rafael | Kogevinas, Manolis | Aragonés, Nuria | López-Abente, Gonzalo | Pollán, Marina
Breast cancer is the most frequent tumor in women worldwide, although well-established risk factors account for 53%–55% of cases. Therefore, other risk factors, including environmental exposures, may explain the remaining variation. Our objective was to assess the relationship between risk of breast cancer and residential proximity to industries, according to categories of industrial groups and specific pollutants released, in the context of a population-based multicase-control study of incident cancer carried out in Spain (MCC-Spain). Using the current residence of cases and controls, this study was restricted to small administrative divisions, including both breast cancer cases (452) and controls (1511) in the 10 geographical areas recruiting breast cancer cases. Distances were calculated from the respective woman's residences to the 116 industries located in the study area. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance (between 1 km and 3 km) to industrial plants, adjusting for matching variables and other confounders. Excess risk (OR; 95%CI) of breast cancer was found near industries overall (1.30; 1.00–1.69 at 3 km), particularly organic chemical industry (2.12; 1.20–3.76 at 2.5 km), food/beverage sector (1.87; 1.26–2.78 at 3 km), ceramic (4.71; 1.62–13.66 at 1.5 km), surface treatment with organic solvents (2.00; 1.23–3.24 at 3 km), and surface treatment of plastic and metals (1.51; 1.06–2.14 at 3 km). By pollutants, the excess risk (OR; 95%CI) was detected near industries releasing pesticides (2.09; 1.14–3.82 at 2 km), and dichloromethane (2.09; 1.28–3.40 at 3 km). Our results suggest a possible increased risk of breast cancer in women living near specific industrial plants and support the need for more detailed exposure assessment of certain agents released by these plants.
Show more [+] Less [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions Full text
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
Show more [+] Less [-]Breast and prostate cancer mortality and industrial pollution Full text
2016
García-Pérez, Javier | Pérez-Abad, Natalia | Lope, Virginia | Castelló, Adela | Pollán, Marina | González Sánchez, Mario | Valencia, Jose Luis | López-Abente, Gonzalo | Fernández-Navarro, Pablo
We investigated whether there might be an excess of breast and prostate cancer mortality among the population residing near Spanish industries, according to different categories of industrial groups. An ecologic study was designed to examine breast and prostate cancer mortality at a municipal level (period 1997–2006). Population exposure to pollution was estimated by means of distance from town of residence to industrial facilities. Using Besag-York-Mollié regression models with Integrated Nested Laplace approximations for Bayesian inference, we assessed the relative risk of dying from these tumors in 2-, 3-, 4-, and 5-km zones around installations, and analyzed the effect of category of industrial group. For all sectors combined, no excess risk was detected. However, excess risk of breast cancer mortality (relative risk, 95% credible interval) was detected near mines (1.10, 1.00–1.21 at 4 km), ceramic industries (1.05, 1.00–1.09 at 5 km), and ship building (1.12, 1.00–1.26 at 5 km), and excess risk of prostate cancer was detected near aquaculture for all distances analyzed (from 2.42, 1.53–3.63 at 2 km to 1.63, 1.07–2.36 at 5 km). Our findings do not support that residing in the vicinity of pollutant industries as a whole (all industrial sectors combined) is a risk factor for breast and prostate cancer mortality. However, isolated statistical associations found in our study with respect to specific industrial groups warrant further investigation.
Show more [+] Less [-]Studies on the treatment efficiency of sediment phosphorus with a combined technology of PCFM and submerged macrophytes Full text
2015
Zhang, Yi | He, Feng | Xia, Shibin | Zhou, Qiaohong | Wu, Zhenbin
The removal efficiency of sediment phosphorus (P) in all fractions with a combined technology of porous ceramic filter media (PCFM) and submerged macrophytes was studied in Donghu Lake, Wuhan, China. The adsorption kinetic models of the sediment P in all fractions on PCFM could be described well by a power function equations (Qt = k · ta, 0 < a < 1). The P removal capacity of the combination of PCFM and Potamogeton crispus, a submerged macrophyte, was higher for all P forms than that of the combination of PCFM and another macrophyte, Vallisneria spiralis. This study suggested that the combination of PCFM and macrophytes could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. The combined technology could be further applied to treat internal P loading in eutrophic waters.
Show more [+] Less [-]The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment Full text
2010
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.
Show more [+] Less [-]