Refine search
Results 1-8 of 8
Abundances and concentrations of brominated azo dyes detected in indoor dust
2019
Dhungana, Birendra | Peng, Hui | Kutarna, Steven | Umbuzeiro, Gisela | Shrestha, Sujan | Liu, Jing | Jones, Paul D. | Subedi, Bikram | Giesy, John P. | Cobb, George P.
Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.
Show more [+] Less [-]Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment
2020
Zheng, Guomao | Boor, Brandon E. | Schreder, Erika | Salamova, Amina
Per- and polyfluoroalkyl substances (PFAS) are widely used in stain-resistant carpets, rugs, and upholstery, as well as in waxes and cleaners, and are potential contaminants in the childcare environment. However, limited knowledge exists on the occurrence of PFAS in indoor environments, apart from residential homes. Here, we determined the occurrence and distribution of 37 neutral and ionic PFAS, including perfluoroalkyl carboxylates (PFCAs) perfluoroalkyl sulfonates (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer sulfonates (FTSs), perfluorooctane sulfonamides and perfluorooctane sulfonamidoethanols (FOSAs/FOSEs), and fluorotelomer acrylates and fluorotelomer methacrylates (FTACs/FTMACs) in the childcare environment and estimated children’s exposure through dust ingestion and dermal absorption. We analyzed dust and nap mats, a commonly used item in many childcares, from eight facilities located in the United States. Twenty-eight PFAS were detected in dust with total PFAS concentrations (ΣPFAS) ranging from 8.1 to 3,700 ng/g and were dominated by the two neutral PFAS groups: ΣFTOH (n.d. – 3,100 ng/g) and ΣFOSA/FOSE (n.d. – 380 ng/g). The ionic PFAS were detected at lower concentrations and were dominated by 6:2 FTS and 8:2 FTS (median 12 and 5.8 ng/g, respectively). ΣPFAS concentrations in mats (1.6–600 ng/g) were generally an order of magnitude lower than in dust and were dominated by ΣFOSA/FOSE concentrations (n.d. – 220 ng/g). Daily intake of neutral PFAS in the childcare environment via dust ingestion was estimated at 0.20 ng/kg bw/day and accounted for 75% of the ΣPFAS intake. This higher exposure to neutral PFAS is concerning considering that many neutral PFAS are the precursors of toxic ionic PFAS, such as PFOA.
Show more [+] Less [-]Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels
2018
Stubbings, W.A. | Schreder, E.D. | Thomas, M.B. | Romanak, K. | Venier, M. | Salamova, A.
We assessed exposure to 39 brominated and 16 organophosphate ester flame retardants (FRs) from both dust and indoor air at seven childcare centres in Seattle, USA, and investigated the importance of nap mats as a source of these chemicals. Many childcare centres serving young children use polyurethane foam mats for the children's naptime. Until recently, the vast majority of these mats sold in the United States contained flame-retarded polyurethane foam to meet California Technical Bulletin 117 (TB117) requirements. With the 2013 update of TB117, allowing manufacturers to meet flammability standards without adding FRs to filling materials, FR-free nap mats have become widely available. We conducted an intervention study by actively switching out FR-treated nap mats with FR-free nap mats and measuring FR levels in indoor air and dust before and after the switch-out. The predominant FRs found in dust and indoor air were 2-ethylhexyl tetrabromobenzoate (EHTBB) and tris(1-chloro-2-propyl) phosphate (TCIPP), respectively. Nap mat samples analysed from four of the six centres contained a Firemaster® mixture, while one mat was predominantly treated with tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and the other contained no detectable target FRs. After replacement, there was a significant decrease (p = 0.03–0.09) in median dust concentrations for bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), EHTBB, tris(4-butylphenyl) phosphate (TBPP), and TDCIPP with reductions of 90%, 79%, 65%, and 42%, respectively. These findings suggest that the nap mats were an important source of these FRs to dust in the investigated childcare environments and that a campaign of swapping out flame-retarded mats for FR-free ones would reduce exposure to these chemicals. While calculated exposure estimates to the investigated FRs via inhalation, dust ingestion, and dermal absorption were below established reference dose values, they are likely underestimated when considering the toddlers' direct contact to the mats and personal cloud effects.
Show more [+] Less [-]Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA
2017
Subedi, Bikram | Sullivan, Kenneth D. | Dhungana, Birendra
The quality of indoor environment has received considerable attention owing to the declining outdoor human activities and the associated public health issues. The prolonged exposure of children in childcare facilities or the occupational exposure of adults to indoor environmental triggers can be a culprit of the pathophysiology of several commonly observed idiopathic syndromes. In this study, concentrations of potentially toxic plasticizers (phthalates as well as non-phthalates) were investigated in 28 dust samples collected from three different indoor environments across the USA. The mean concentrations of non-phthalate plasticizers [acetyl tri-n-butyl citrate (ATBC), di-(2-ethylhexyl) adipate (DEHA), and di-isobutyl adipate (DIBA)] were found at 0.51–880 μg/g for the first time in indoor dust samples from childcare facilities, homes, and salons across the USA. The observed concentrations of these replacement non-phthalate plasticizer were as high as di-(2-ethylhexyl) phthalate, the most frequently detected phthalate plasticizer at highest concentration worldwide, in most of indoor dust samples. The estimated daily intakes of total phthalates (n = 7) by children and toddlers through indoor dust in childcare facilities were 1.6 times higher than the non-phthalate plasticizers (n = 3), whereas estimated daily intake of total non-phthalates for all age groups at homes were 1.9 times higher than the phthalate plasticizers. This study reveals, for the first time, a more elevated (∼3 folds) occupational intake of phthalate and non-phthalate plasticizers through the indoor dust at salons (214 and 285 ng/kg‐bw/day, respectively) than at homes in the USA.
Show more [+] Less [-]Environmental lead exposure risks associated with children's outdoor playgrounds
2013
Taylor, Mark Patrick | Camenzuli, Danielle | Kristensen, Louise Jane | Forbes, Miriam | Zahran, Sammy
This study examines exposure risks associated with lead smelter emissions at children's public playgrounds in Port Pirie, South Australia. Lead and other metal values were measured in air, soil, surface dust and on pre- and post-play hand wipes. Playgrounds closest to the smelter were significantly more lead contaminated compared to those further away (t(27.545) = 3.76; p = .001). Port Pirie post-play hand wipes contained significantly higher lead loadings (maximum hand lead value of 49,432 μg/m2) than pre-play hand wipes (t(27) = 3.57, p = .001). A 1% increase in air lead (μg/m3) was related to a 0.713% increase in lead dust on play surfaces (95% CI, 0.253–1.174), and a 0.612% increase in post-play wipe lead (95% CI, 0.257–0.970). Contaminated dust from smelter emissions is determined as the source and cause of childhood lead poisoning at a rate of approximately one child every third day.
Show more [+] Less [-]Soil intervention as a strategy for lead exposure prevention: The New Orleans lead-safe childcare playground project
2011
Mielke, Howard W. | Covington, Tina P. | Mielke, Paul W., Jr | Wolman, Fredericka J. | Powell, Eric T. | Gonzales, Chris R.
The feasibility of reducing children’s exposure to lead (Pb) polluted soil in New Orleans is tested. Childcare centers (median = 48 children) are often located in former residences. The extent of soil Pb was determined by selecting centers in both the core and outlying areas. The initial 558 mg/kg median soil Pb (range 14–3692 mg/kg) decreased to median 4.1 mg/kg (range 2.2–26.1 mg/kg) after intervention with geotextile covered by 15 cm of river alluvium. Pb loading decreased from a median of 4887 μg/m² (454 μg/ft²) range 603–56650 μg/m² (56–5263 μg/ft²) to a median of 398 μg/m² (37 μg/ft²) range 86–980 μg/m² (8–91 μg/ft²). Multi-Response Permutation Procedures indicate similar (P-values = 0.160–0.231) soil Pb at childcare centers compared to soil Pb of nearby residential communities. At ∼$100 per child, soil Pb and surface loading were reduced within hours, advancing an upstream intervention conceptualization about Pb exposure prevention.
Show more [+] Less [-]Determination of elemental toxicity migration limits, bioaccessibility and risk assessment of essential childcare products
2016
Aboel Dahab, Ali | Elhag, Dhia Eldin A. | Ahmed, Ammar Bourai | Al-Obaid, Humaida A.
Children especially infants are particularly sensitive to contaminant exposure, they are exposed to toxic substances including heavy metals via multiple pathways, i.e. food, air, water, soil and childcare products. To date, determination of metal bioaccessibility in teethers and feeding teats is missing in the literature; therefore, it is vitally important to assess their metal bioaccessibility and characterise the risk for children. The aim of this study is to determine the migration levels of toxic elements in teethers and feeding teats of different brands as a measure of metal bioaccessibility and characterise the risk for children exposed to these products. The migration limits of several heavy metals (Al, As, Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, Se, Sr, Zn) in different brands of teethers and feeding teats were determined simultaneously using inductively coupled plasma optical emission spectroscopy (ICP-OES) adopting a protocol in the European standards for safety of toys. With the exception of Pb, the migration limits of all elements in all brands of teethers and feeding teats were below the specified limits. However, in the case of Pb, the migration was above the specified limits in all samples except one brand of feeding teats. Risk assessment expressed as hazard index (HI) was calculated for detected elements and all samples. Although HI was below 1.0 for all samples except one sample, the high Pb concentration would pose a considerable risk to children. Therefore, we recommend a more thorough research and risk characterisation taking into consideration the factors that affect HI values.
Show more [+] Less [-]Phthalate exposure and cumulative risk in a Chinese newborn population
2019
Li, Xueyan | Liu, Liangpo | Wang, Heng | Zhang, Xueqin | Xiao, Tonghu | Shen, Heqing
Phthalates have been attracted as a considerable attention in toxicological research as well as public health context due to their ubiquitous occurrence and potential adverse health effects. Newborns are susceptible to the environmental risk factors; however, data are still limited on newborn phthalate exposure and risk assessment worldwide, especially in China. This study was nested in a cross-sectional retrospective study of 1359 pregnant women recruited in Xiamen Maternity and Child Care Hospital, China, during June to July 2012. All urine samples from newborn were collected using disposal diapers during the first two postnatal days, and seven phthalate metabolites were measured by LC-ESI-MS/MS. Phthalate exposure and accumulation risk were evaluated based on the measured newborn urinary internal doses. The detection rate (96.5%) and the median concentration (17.5 ng/mL) of mono-n-butyl phthalate (MBP) were the highest, while monobenzyl phthalate (MBzP) concentration was the lowest with a detection rate (1.50%). By estimating the daily intakes of the parent phthalates, their EDI were 0.04, 0.10, 0.32, 0.00, and 0.12 μg/kg-bw/day for dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalates (DBP), benzyl butyl phthalate (BBzP), and di-(2-ethylhexyl) phthalate (DEHP), respectively. The newborns were commonly exposed to phthalates but no one exceeds the regulated tolerable daily intake (TDI) values in this large newborn population.
Show more [+] Less [-]