Refine search
Results 1-10 of 170
Characterization and Applications of Innovative Sn-doped TiO2/AC and PPy-CS/Sn-doped TiO2 Nanocomposites as Adsorbent Materials
2021
Naser, Elham | AL-Mokaram, Ali | Hussein, Fadhela
This work explores the synthesis and characterization of two novel nanocomposites that can be used in various applications, such as aqueous solution adsorption of pollutants. The first nanocomposite consists of tin (Sn)-doped titanium dioxide (TiO2) on activated carbon, while the other one consists of polypyrole (PPy), chitosan (CS), and Sn-doped TiO2. A contrast was made of their effective adsorbent materials for the removal of Cibacron Brilliant Yellow dye from aqueous solutions. Different analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX), and Fourier transform - infrared (FT-IR) were used to analysis the nanocomposite samples. SEM images show that the average particle diameter of PPy-CS/Sn-doped TiO2 NC is 75 ± 3 nm, while Sn-doped TiO2/AC particles have an average diameter of 40 ± 2 nm. The greater PPy-CS/Sn-doped TiO2 nanocoposite particle diameter indicates that the polymers cover the Sn-doped TiO2 nanoparticles, which leads to higher in the diameter of the particles. The adsorption efficiency of Sn-doped TiO2/AC was higher than that of PPy-CS/Sn-doped TiO2 sample due to its smaller particle size which resulted in a higher surface area which provides more adsorption sites. However, both samples showed remarkable adsorption capacity, where the adsorption capacity of Sn-doped TiO2/AC and PPy-CS/Sn-doped TiO2 were 104 and 103 mg/g, respectively.
Show more [+] Less [-]Remediation techniques for uranium removal from polluted environment – Review on methods, mechanism and toxicology
2022
Akash, S. | Sivaprakash, Baskaran | Raja, V.C Vadivel | Rajamohan, Natarajan | Muthusamy, Govarthanan
Uranium, a radionuclide, is a predominant element utilized for speciality requirements in industrial applications, as fuels and catalyst. The radioactive properties and chemical toxicity of uranium causes a major threat to the ecosystem. The hazards associated with Uranium pollution includes the cancer in bones, liver, and lungs. The toxicological properties of Uranium are discussed in detail. Although there are many methods to eliminate those hazards, this research work is aimed to describe the application of bioremediation methods. Bioremediation methods involve elimination of the hazards of uranium, by transforming into low oxidation form using natural microbes and plants. This study deeply elucidates the methods as bioleaching, biosorption, bioreduction and phytoremediation. Bioleaching process involves bio-oxidation of tetravalent uranium when it gets in contact with acidophilic metal bacterial complex to obtain leach liquor. In biosorption, chitin/chitosan derived sorbents act as chelators and binds with uranium by electrostatic attraction. Bio reduction employs a bacterial transformation into enzymes which immobilize and reduce uranium. Phytoremediation includes phytoextraction and phytotranslocation of uranium through xylems from soil to roots and shoots of plants. The highest uranium removal and uptake reported using the different methods are listed as follows: bioleaching (100% uranium recovery), biosorption (167 g kg⁻¹ uranium uptake), bioreduction (98.9% uranium recovery), and phytoremediation (49,639 mg kg⁻¹ uranium uptake). Among all the techniques mentioned above, bioleaching has been proved to be the most efficient for uranium remediation.
Show more [+] Less [-]Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan
2021
Yin, Zheng | Qiu, Dong | Zhang, Meiyi
It has been shown that chemical modification of chitosan with sulfur (S) functional groups could significantly enhance its chelating capability with heavy metals included Cd(II). However, a molecular level understanding has been lacking. Here, we carried out X-ray absorption fine structure (XAFS) and Fourier transformed infrared (FTIR) spectra studies to bridge this knowledge gap. The results indicate that both Cd–O/N and Cd–S bonds exist in the complex of Cd(II) with dithiocarbamate chitosan (DTC-CTS). S functional groups (dithiocarbamate) in DTC-CTS play the major role in complexation with Cd(II) and S content affects the adsorption mechanism. At low S content, Cd(II) is mainly adsorbed on DTC-CTS as an outer-sphere complex with two monodentate amino groups and two water molecules in tetrahedral configuration. At high S content, Cd adsorption dominantly occurs by formation of an inner-sphere complex with two bidentate mononuclear S ligands in tetrahedral configuration. This investigation provides information on the effectiveness and mechanisms of Cd(II) removal that is critical for evaluating modified chitosan applications for stabilization of Cd(II) in surface water, groundwater, soils and sediments.
Show more [+] Less [-]Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals
2021
Yang, Shujin | Liao, Y. | Karthikeyan, K.G. | Pan, X.J.
Developing low-cost and high-performance biosorbent for water purification continues drawing more and more attention. In this study, cellulose-chitosan composite hydrogels were fabricated via a co-dissolution and regeneration process using a molten salt hydrate (a 60 wt% aqueous solution of LiBr) as a solvent. The addition of chitosan not only introduced functionality for metal adsorption but also increased the specific surface area and improved the mechanical strength of the composite hydrogel, compared to pure cellulose hydrogel. Batch adsorption experiments indicated that the composite hydrogel with 37% cellulose and 63% chitosan exhibited an adsorption capacity of 94.3 mg/g (1.49 mmol/g) toward Cu²⁺ at 23 °C, pH 5, and initial metal concentration of 1500 mg/L, which was 10 times greater than the adsorption capacity of pure cellulose hydrogel. Competitive adsorption from a mixed metals solution revealed that the cellulose-chitosan composite hydrogel exhibited selective adsorption of the metals in the order of Cu²⁺ > Zn²⁺ > Co²⁺. This study successfully demonstrated an innovative method to fabricate biosorbents from abundant and renewable natural polymers (cellulose and chitosan) for removing metal ions from water.
Show more [+] Less [-]Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater
2021
Dar, Afzal Ahmed | Pan, Bao | Qin, Jiani | Zhu, Qiuhui | Lichtfouse, Eric | ʻUs̲mān, Muḥammad | Wang, Chuanyi
This review is intended to evaluate the use of ferrate (Fe(VI)), being a green coagulant, sustainable and reactive oxidant, to remove micro pollutants especially pharmaceutical pollutants in contaminated water. After a brief description of advanced oxidation processes, fundamental dimensions regarding the nature, reactivity, and chemistry of this oxidant are summarized. The degradation of contaminants by Fe(VI) involves several mechanisms and reactive agents which are critically evaluated. The efficiency and chemistry of Fe(VI) oxidation differs according to the reaction conditions and activation agent, such as soluble Fe(VI) processes, which involve Fe(VI), UV light, and electro-Fe(VI) oxidation. Fe(VI) application methods (including single dose, multiple doses, chitosan coating etc), and Fe(VI) with activating agents (including sulfite, thiosulfate, and UV) are also described to degrade the micro pollutants. Besides, application of Fe(VI) to remove pharmaceuticals in wastewater are intensely studied. Electrochemical prepared Fe(VI) has more wide application than wet oxidation method. Meanwhile, we elaborated Fe(VI) performance, limitations, and proposed innovative aspects to improve its stability, such as the generation of Fe(III), synergetic effects, nanopores entrapment, and nanopores capsules. This study provides conclusive direction for synergetic oxidative technique to degrade the micro pollutants.
Show more [+] Less [-]Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms
2019
Zhang, Zhen | He, Shuran | Zhang, Yulong | Zhang, Kun | Wang, Jinjin | Jing, Ran | Yang, Xingjian | Hu, Zheng | Lin, Xiaojing | Li, Yongtao
In the present study, the competitive adsorption of Cu²⁺, Pb²⁺, and Cd²⁺ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu²⁺ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu²⁺, Pb²⁺ and Cd²⁺ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu²⁺ suppressed Pb²⁺ and Cd²⁺ adsorptions, while the effect of Cd²⁺ on Cu²⁺ and Pb²⁺ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb²⁺ > Cu²⁺ > Cd²⁺ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the –OH and -COO⁻ groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
Show more [+] Less [-]Dissolution of metal and metal oxide nanoparticles in aqueous media
2014
Odzak, Niksa | Kistler, David | Behra, Renata | Sigg, Laura
The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media.
Show more [+] Less [-]Simultaneous capturing of mixed contaminants from wastewater using novel one-pot chitosan functionalized with EDTA and graphene oxide adsorbent
2022
Verma, Monu | Ashwani Kumar, | Lee, Ingyu | Kumar, Vinod | Park, Ju-Hyun | Kim, Hyunook
The emergence of inorganic and organic contaminants has raised great concerns owing to their adverse impact on human health and ecological security. Herein, first time one-pot process was applied for chitosan (CS) functionalization using graphene oxide (GO) and ethylenediaminetetraacetic acid (EDTA) for simultaneous capturing of toxic inorganic (lead (Pb²⁺) and cadmium (Cd²⁺)) and organic (ciprofloxacin (CIP) and sildenafil (SDF)) contaminants from wastewater. In this approach, we believe that CS would work as a backbone, GO would capture both inorganic and organic contaminants via electrostatic interactions, while EDTA would make complexation with heavy metals. Various parameters including pH, reaction time, concentration, reusability etc. were evaluated to achieve the best experimental result in monocomponent system. The prepared adsorbent displayed an excellent monolayer adsorption capacity of 351.20 and 264.10 mg g⁻¹ for Pb²⁺ and Cd²⁺, respectively, while a heterogeneous sorption capacity of 75.40 and 40.90 mg g⁻¹ for CIP and SDF, respectively. The kinetics data fitted well to Pseudo-second order (PSO) kinetics model for both types of contaminants and gave faster interaction towards metal ions (higher k₂) than organic contaminants. Experimental results showed excellent adsorption efficiencies at environmental levels in the capturing of both inorganic and organic contaminants at the same time from polluted water. The capturing mechanism of both types of contaminants was explained by elemental mapping, EDS, and FT−IR spectra. Overall, easy synthesis, excellent capturing capacity, and reusability imply that the prepared adsorbent has a sufficient potential for the treatment of co-existing toxic contaminants in water.
Show more [+] Less [-]The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air
2021
Mishra, Disha | Yadav, Ranu | Pratap Singh, Raghvendra | Taneja, Ajay | Tiwari, Rahul | Khare, Puja
The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m³ to 80 m³) and in different size fractions of aerosol (<0.25 μm–2.5 μm). The composite system had high encapsulation efficiency (88–91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm⁻³ to 2.33 log CFUm⁻³) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 μm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.
Show more [+] Less [-]Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna
2020
Villa, Sara | Maggioni, Daniela | Hamza, Hady | Di Nica, Valeria | Magni, Stefano | Morosetti, Bianca | Parenti, Camilla Carla | Finizio, Antonio | Binelli, Andrea | Della Torre, Camilla
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO₂NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO₂NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO₂NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO₂NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO₂NPs. Specifically, in D. magna the CeO₂NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO₂NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Show more [+] Less [-]