Refine search
Results 1-3 of 3
An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga
2016
Kearns, James | Turner, Andrew
Bismuth is a heavy metal whose biogeochemical behaviour in the marine environment is poorly defined. In this study, we exposed three different species of macroalga (the chlorophyte, Ulva lactuca, the phaeophyte, Fucus vesiculosus, and the rhodophyte, Chondrus crispus) to different concentrations of Bi (up to 50 μg L⁻¹) under controlled, laboratory conditions. After a period of 48-h, the phytotoxicity of Bi was measured in terms of chlorophyll fluorescence quenching, and adsorption and internalisation of Bi determined by ICP after EDTA extraction and acid digestion, respectively. For all algae, both the internalisation and total accumulation of Bi were proportional to the concentration of aqueous metal. Total accumulation followed the order: F. vesiculosus > C. crispus > U. lactuca; with respective accumulation factors of about 4200, 1700 and 600 L kg⁻¹. Greatest internalisation (about 33% of total accumulated Bi) was exhibited by C. crispus, the only macroalga to display a phytotoxic response in the exposures. A comparison of the present results with those reported in the literature suggests that Bi accumulation by macroalgae is significantly lower than its accumulation by marine plankton (volume concentration factors of 10⁵ to 10⁷), and that the phytotoxicity of Bi is low relative to other heavy metals like Ag and Tl.
Show more [+] Less [-]Dynamics of δ15N isotopic signatures of different intertidal macroalgal species: Assessment of bioindicators of N sources in coastal areas
2016
Lemesle, Stéphanie | Erraud, Alexandre | Mussio, Isabelle | Rusig, Anne-Marie | Claquin, Pascal
δ15N of annual (Ulva sp., Porphyra sp.) and perennial intertidal seaweed species (Chondrus crispus, Fucus sp.) collected on 17 sampling points along the French coast of the English Channel in 2012 and 2013 were assessed on their suitability as bioindicators of N pollution in coastal areas. A sine function applied for δ15N time series data showed for all the species the same seasonal trend with lowest δ15N values in April and highest in summer but with no significant interspecific differences of amplitude (α) and phase angle (ϕ). This model provides a useful tool for monitoring the inter-annual changes of N pollution. An interspecific variability of δ15N values was observed, probably due to their tolerance to emersion. An in vitro study for comparing the kinetic acquisition of the isotopic signal and N uptake mechanisms of each species underlined the influence of algal physiology on the δ15N interspecific variability.
Show more [+] Less [-]Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments
2014
Quilliam, Richard S. | Jamieson, Julie | Oliver, David M.
The revised Bathing Water Directive (rBWD) introduces more stringent standards for microbial water quality and promotes more pro-active management of the beach environment through the production of a bathing water profile (BWP). The aim of this study was to determine whether living seaweeds in the littoral zone are colonised by faecal indicator organisms (FIOs), and to quantify the survival dynamics of waterborne Escherichia coli in microcosms containing senescing seaweeds. Living seaweed (Fucus spiralis) was not associated with FIO colonisation, although could be providing a protected environment in the underlying sand. Senescing seaweeds enhanced waterborne E. coli survival compared to plastic debris, with the brown seaweed Laminaria saccharina facilitating greater E. coli persistence than either Chondrus crispus or Ulva lactuca. This has important implications for FIO survival on bathing beaches as the majority of beach-cast biomass is composed of brown seaweeds, which could support significant levels of FIOs.
Show more [+] Less [-]