Refine search
Results 1-10 of 156
Detection of R-plasmids in Salmonella isolated from clams and marine waters of Kuwait.
1985
Chugh T.D. | Kadri M.H.
Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides
2021
Lamas, JPablo | Arévalo, Fabiola | Moroño, Ángeles | Correa, Jorge | Rossignoli, Araceli E. | Blanco, Juan
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg⁻¹, and a maximum value of 23.93 μg kg⁻¹. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
Show more [+] Less [-]Perfluorinated carboxylic acids in edible clams: A possible exposure source of perfluorooctanoic acid for Japanese population
2020
Fujii, Yukiko | Harada, Kouji H. | Nakamura, Tsubasa | Kato, Yoshihisa | Ohta, Chiho | Koga, Nobuyuki | Kimura, Osamu | Endo, Tetsuya | Koizumi, Akio | Haraguchi, Koichi
We investigated the profiles and levels of perfluoroalkyl carboxylic acids in edible clams from five fishing sites in Japan (Hokkaido, Himakajima-Aichi, Atsumi-Aichi, Kyoto, and Kumamoto) and one site in Vancouver, Canada in 2017. The mean concentrations of perfluoroalkyl carboxylic acids with 6–15 carbon atoms (C6–C15) in edible clams from Japanese coastal waters ranged from 197 to 1757 pg/g wet weight, but were only 48 pg/g wet weight in clams from the site in Canada. Total perfluoroalkyl carboxylic acid concentrations in clams collected in Japanese waters were 4–40 times higher than concentrations in clams from Canada. Perfluorooctanoic acid (C8) contributed 53% of total perfluoroalkyl carboxylic acid concentrations in the clams from Japanese waters, which may be contaminated from terrestrial sources though river effluents, but was not detected in the clam samples from Canada. Principal component analysis separated shorter- and longer-chain perfluoroalkyl carboxylic acids, suggesting differing emission sources or environmental fate. Consumption of clams may be an exposure pathway of perfluorooctanoic acid in the Japanese population.
Show more [+] Less [-]The effects of wet wipe pollution on the Asian clam, Corbicula fluminea (Mollusca: Bivalvia) in the River Thames, London
2020
McCoy, K.A. | Hodgson, D.J. | Clark, P.F. | Morritt, D.
The aim of the present study was to evaluate “flushable” and “non-flushable” wet wipes as a source of plastic pollution in the River Thames at Hammersmith, London and the impacts they have on the invasive Asian clam, Corbicula fluminea, in this watercourse. Surveys were conducted to assess whether the density of wet wipes along the foreshore upstream of Hammersmith Bridge affected the distribution of C. fluminea. High densities of wet wipes were associated with low numbers of clams and vice versa. The maximum wet wipe density recorded was 143 wipes m⁻² and maximum clam density 151 individuals m⁻². Clams adjacent to the wet wipe reefs were found to contain synthetic polymers including polypropylene (57%), polyethylene (9%), polyallomer (8%), nylon (8%) and polyester (3%). Some of these polymers may have originated from the wet wipe reefs.
Show more [+] Less [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
Show more [+] Less [-]Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa
2020
Tang, Yu | Zhou, Weishang | Sun, Shuge | Du, Xueying | Han, Yu | Shi, Wei | Liu, Guangxu
Though invertebrates are one of the largest groups of animal species in the sea and exhibit robust immune and neural responses that are crucial for their health and survival, the potential immunotoxicity and neurotoxicity of the most produced chemical bisphenol A (BPA), especially in conjunction with microplastics (MPs), still remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA and MPs alone or in combination on a series of immune and neural biomarkers were investigated in the invertebrate bivalve species blood clam (Tegillarca granosa). Evident immunotoxicity as indicated by alterations in hematic indexes was observed after two weeks of exposure to BPA and MPs at environmentally realistic concentrations. The expression of four immune-related genes from the NFκB signaling pathway was also found to be significantly suppressed by the BPA and MP treatment. In addition, exposure to BPA and MPs led to an increase in the in vivo contents of three key neurotransmitters (GABA, DA, and ACh) but a decrease in the expression of genes encoding modulatory enzymes and receptors for these neurotransmitters, implying the evident neurotoxicity of BPA and MPs to blood clam. Furthermore, the results demonstrated that the toxic impacts exerted by BPA were significantly aggravated by the co-presence of MPs, which may be due to interactions between BPA and MPs as well as those between MPs and clam individuals.
Show more [+] Less [-]Combined toxicity of organophosphate flame retardants and cadmium to Corbicula fluminea in aquatic sediments
2018
Li, Dandan | Wang, Peifang | Wang, Chao | Fan, Xiulei | Wang, Xun | Hu, Bin
Organophosphate flame retardants (OPFRs), as alternatives to polybrominated biphenyl ethers (PBDEs), are frequently detected in various environmental matrices. Owing to urbanization and industrial pollution, co-contamination of OPFRs and heavy metals is ubiquitous in the environment. The toxicity of OPFRs in aqueous phase is a significant concern, but uncertainty still exists regarding the co-toxicity to benthic organisms of OPFRs and metals in sediments. Hence, we explored the physiological response of Corbicula fluminea to OPFRs and Cd in sediments. The results indicated that the antioxidant system in the clams was stimulated in the presence of OPFRs and Cd, and the oxidative stress increased with increasing concentrations of OPFRs. In contrast, the cytochrome P450 (CYP450) content and acetylcholinesterase (AChE) activity were reduced by exposure to both OPFRs and Cd. The cytochrome P450 4 family (CYP4) mRNA expression and OPFR toxicity were lower than those in previously reported experiments conducted in the water phase. Moreover, the expression levels of metallothionein (MT) and AChE mRNA decreased when OPFRs and Cd were present together. The highest integrated biomarker response (IBR) index (IBR = 15.41) was observed in the presence of 45 mg kg⁻¹ Cd + 200 mg kg⁻¹ OPFRs, rather than the 45 mg kg⁻¹ Cd + 400 mg kg⁻¹ OPFRs treatment (IBR = 9.48). In addition, CYP450 and AChE in the digestive glands of C. fluminea exhibited significant correlations with the concentration of the OPFR/Cd mixture (p < 0.01) and could be effective biomarkers for OPFR and Cd co-contamination. The results potentially contribute to more realistic predictions and evaluations of the environmental risks posed by OPFRs in aquatic sediments contaminated with heavy metals, particularly with respect to the risk to benthic organisms.
Show more [+] Less [-]Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model
2017
Chen, Wen-Qian | Wang, Wen-Xiong | Tan, Qiao-Guo
The effects of salinity on metal toxicity are complex: not only affecting metal bioaccumulation, but also altering the physiology and sensitivity of organisms. In this study, we used a toxicokinetic-toxicodynamic (TK-TD) model to separate and quantify the dual effects of salinity on copper (Cu) toxicity in a euryhaline clam Potamocorbula laevis. The toxicokinetics of Cu was determined using the stable isotope 65Cu as a tracer at concentrations (10–500 μg L−1) realistic to contaminated environments and at salinities ranging from 5 to 30. At low Cu concentrations (ca. 10 μg L−1), Cu bioaccumulation decreased monotonically with salinity, and the uptake rate constant (ku, 0.546 L g−1 h−1 to 0.213 L g−1 h−1) fitted well with an empirical equation, ku = 1/(1.35 + 0.116·Salinity), by treating salinity as a pseudo-competitor. The median lethal concentrations (LC50s) of Cu were 269, 224, and 192 μg L−1 at salinity 5, 15, and 30, respectively. At high Cu concentrations (ca. 500 μg L−1), elevating salinity were much less effective in decreasing Cu bioaccumulation; whereas Cu toxicity increased with salinity. The increased toxicity could be explained by the increases in Cu killing rates (kks), which were estimated to be 0.44–2.08 mg μg−1 h−1 and were presumably due to the osmotic stress caused by the deviation from the optimal salinity of the clams. The other toxicodynamic parameter, internal threshold concentration (CIT), ranged from 79 to 133 μg−1 g−1 and showed no clear trend with salinity.
Show more [+] Less [-]Microplastics in Taihu Lake, China
2016
Su, Lei | Xue, Yingang | Li, Lingyun | Yang, Dongqi | Kolandhasamy, Prabhu | Li, Daoji | Shi, Huahong
In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 106–6.8 × 106 items/km2 in plankton net samples, 3.4–25.8 items/L in surface water, 11.0–234.6 items/kg dw in sediments and 0.2–12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100–1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake.
Show more [+] Less [-]Bioaccumulation of hepatotoxins – A considerable risk in the Latvian environment
2015
Barda, Ieva | Kankaanpää, Harri | Purina, Ingrida | Balode, Maija | Sjövall, Olli | Meriluoto, Jussi
The Gulf of Riga, river Daugava and several interconnected lakes around the City of Riga, Latvia, form a dynamic brackish-freshwater system favouring occurrence of toxic cyanobacteria. We examined bioaccumulation of microcystins and nodularin-R in aquatic organisms in Latvian lakes, the Gulf of Riga and west coast of open Baltic Sea in 2002–2007. The freshwater unionids accumulated toxins efficiently, followed by snails. In contrast, Dreissena polymorpha and most lake fishes (except roach) accumulated much less hepatotoxins. Significant nodularin-R concentrations were detected also in marine clams and flounders. No transfer of nodularin-R and microcystins between lake and brackish water systems took place. Lake mussels can transfer hepatotoxins to higher organisms, and also effectively remove toxins from the water column. Obvious health risks to aquatic organisms and humans are discussed.
Show more [+] Less [-]