Refine search
Results 1-10 of 156
Detection of R-plasmids in Salmonella isolated from clams and marine waters of Kuwait.
1985
Chugh T.D. | Kadri M.H.
Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum Full text
2021
Zhan, Junfei | Wang, Shuang | Li, Fei | Ji, Chenglong | Wu, Huifeng
Cadmium (Cd) is being frequently detected in marine organisms. However, dose-dependent effects of Cd challenged unraveling the toxicological mechanisms of Cd to marine organisms and developing biomarkers. Here, the dose-dependent effects of Cd on clams Ruditapes philippinarum following exposure to 5 doses of Cd (3, 9, 27, 81, 243 μg/L) were investigated using benchmark dose (BMD) method. By model fitting, calculation of BMD values was performed on transcriptomic profiles, metals concentrations, and antioxidant indices. Cd exposure induced not only significant Cd accumulation in clams, but also marked alterations of essential metals such as Ca, Cu, Zn, Mn, and Fe. Gene regulation posed little influence on essential metal homeostasis, indicated by poor enrichment of differentially expressed genes (DEGs) associated with metal binding and metal transport in lower concentrations of Cd-treated groups. BMD analysis on biological processes and pathways showed that peptide cross-linking was the most sensitive biological process to Cd exposure, followed by focal adhesion, ubiquitin mediated proteolysis, and apoptosis. Occurrence of apoptosis was also confirmed by TUENL-positive staining in gills and hepatopancreas of clams treated with Cd. Furthermore, many DEGs, such as transglutaminases (TGs), metallothionein (MT), STEAP2-like and laccase, which presented linear or monotonic curves and relatively low BMD values, were potentially preferable biomarkers in clams to Cd. Overall, BMD analysis on transcriptomic profiles, metals concentrations and biochemical endpoints unraveled the sensitiveness of key events in response to Cd treatments, which provided new insights in exploring the toxicological mechanisms of Cd in clams as well as biomarker selection.
Show more [+] Less [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species Full text
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
Show more [+] Less [-]Bacterioplankton community in response to biological filters (clam, biofilm, and macrophytes) in an integrated aquaculture wastewater bioremediation system Full text
2019
Lukwambe, Betina | Zhao, Li | Nicholaus, Regan | Yang, Wen | Zhu, Jinyong | Zheng, Zhongming
Integrated systems with appropriate bio-filters can be used to treat aquaculture effluents. However, the information on bio-filters that alters the ecological functions of the bacterioplankton community (BC) in biodegradation of the aquaculture effluents remains controversial. In this study, we implemented a comprehensive restoration technology combined with bio-filters [biofilm, clam (Tegillarca granosa), and macrophytes (Spartina anglica)] to investigate their influence on the stability of the BC and nutrient removal. We found that the diversity of BC was linked with biogeochemical factors in processing and upcycling nitrogen-rich effluents into high-value biomass. The BC exhibited significant distinct patterns in the bio-filter areas. Potential biomarkers for constrained harmfully algae-bacteria (Nitriliruptoraceae, Bacillales, and Rhodobacteraceae) and nutrient removal were significantly higher in the bio-filters areas. The bio-filters significantly promoted the restoration effects of N and P balance by reducing 82.34% of total nitrogen (TN) and 81.64% of total phosphorus (TP) loads at the water interface. The main mechanisms for TN and TP removal and nutrient transformation were achieved by assimilation and absorption by the emergent macrophytes (Spartina anglica). The bio-filters significantly influenced the biodegradability and resolvability of particulate organic matter through ammonification, nitrification, and denitrification of microbes, which meliorated the nutrient removal. Beside bio-filter effects, the BC was significantly controlled by abiotic factors [nitrate (NO₃⁻-N), dissolved oxygen (DO), total nitrogen (TN), and water temperature (WT)], and biotic factors (chlorophyll ɑ and green algae). Our study revealed that the co-existence system with bio-filters may greatly improve our understanding on the ecological functions of the BC in aquaculture systems. Overall, combined bio-filters provide an opportunity for the development of efficient and optimized aquaculture wastewater treatment technology.
Show more [+] Less [-]Exogenous Ca2+ mitigates the toxic effects of TiO2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa Full text
2019
Guan, Xiaofan | Tang, Yu | Zha, Shanjie | Han, Yu | Shi, Wei | Ren, Peng | Yan, Maocang | Pan, Qicun | Hu, Yuan | Fang, Jun | Zhang, Jiongming | Liu, Guangxu
Phagocytosis suppression induced by nanoparticles (NPs) exposure is increasingly reported in marine species. However, the mechanisms underlying this impact remain poorly understood. In order to improve our present understanding of the immunotoxicity of NPs, acute (96 h) TiO2 NP exposure and rescue trials via exogenous supply of Ca2+ were performed in the blood clam, Tegillarca granosa. The results show that the phagocytosis rate, cell viability, and intracellular Ca2+ concentration of haemocytes were significantly suppressed, whereas the intracellular ROS concentration of haemocytes significantly increased upon nTiO2 exposure. Exposure to nTiO2 also led to the significant downregulation of Caspase-3, Caspase-6, apoptosis regulator Bcl-2, Bcl-2-associated X, calmodulin kinase II, and calmodulin kinase kinase II. Furthermore, the toxic impacts of nTiO2 were partially mitigated by the addition of exogenous Ca2+, as indicated by the recovery tendency in almost all the measured parameters. The present study indicates that Ca2+ signaling could be one of the key pathways through which nTiO2 attacks phagocytosis.
Show more [+] Less [-]How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease Full text
2015
Freitas, Rosa | Almeida, Angela Maria da | Calisto, Vânia | Velez, Cátia | Moreira, Anthony | Schneider, Rudolf J. | Esteves, Valdemar I. | Wrona, Frederick J. | Soares, Amadeu M.V. M. | Figueira, Etelvina
How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease Full text
2015
Freitas, Rosa | Almeida, Angela Maria da | Calisto, Vânia | Velez, Cátia | Moreira, Anthony | Schneider, Rudolf J. | Esteves, Valdemar I. | Wrona, Frederick J. | Soares, Amadeu M.V. M. | Figueira, Etelvina
In the present study, the bivalve Scrobicularia plana, collected from two contrasting areas (pristine location and mercury contaminated area), was selected to assess the biochemical alterations imposed by pH decrease, carbamazepine (an antiepileptic) and the combined effect of both stressors. The effects on oxidative stress related biomarkers after 96 h exposure revealed that pH decrease and carbamazepine induced alterations on clams, with greater impacts on individuals from the contaminated area which presented higher mortality, higher lipid peroxidation and higher glutathione S-transferase activity. These results emphasize the risk of extrapolating results from one area to another, since the same species inhabiting different areas may be affected differently when exposed to the same stressors. Furthermore, the results obtained showed that, when combined, the impact of pH decrease and carbamazepine was lower than each stressor acting alone, which could be related to the defence mechanism of valves closure when bivalves are under higher stressful conditions.
Show more [+] Less [-]How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease Full text
2015 | 1000
Freitas, Rosa | Almeida, Ângela | Calisto, Vânia | Velez, Cátia | Moreira, Anthony | Schneider, Rudolf J. | Esteves, Valdemar I. | Wrona, Frederick J. | Soares, Amadeu M. V. M. | Figueira, Etelvina
In the present study, the bivalve Scrobicularia plana, collected from two contrasting areas (pristine location and mercury contaminated area), was selected to assess the biochemical alterations imposed by pH decrease, carbamazepine (an antiepileptic) and the combined effect of both stressors. The effects on oxidative stress related biomarkers after 96 h exposure revealed that pH decrease and carbamazepine induced alterations on clams, with greater impacts on individuals from the contaminated area which presented higher mortality, higher lipid peroxidation and higher glutathione S-transferase activity. These results emphasize the risk of extrapolating results from one area to another, since the same species inhabiting different areas may be affected differently when exposed to the same stressors. Furthermore, the results obtained showed that, when combined, the impact of pH decrease and carbamazepine was lower than each stressor acting alone, which could be related to the defence mechanism of valves closure when bivalves are under higher stressful conditions.
Show more [+] Less [-]Environmentally realistic concentrations of the antibiotic Trimethoprim affect haemocyte parameters but not antioxidant enzyme activities in the clam Ruditapes philippinarum Full text
2015
Matozzo, Valerio | De Notaris, Chiara | Finos, Livio | Filippini, Raffaella | Piovan, Anna
Several biomarkers were measured to evaluate the effects of Trimethoprim (TMP; 300, 600 and 900 ng/L) in the clam Ruditapes philippinarum after exposure for 1, 3 and 7 days. The actual TMP concentrations were also measured in the experimental tanks. The total haemocyte count significantly increased in 7 day-exposed clams, whereas alterations in haemocyte volume were observed after 1 and 3 days of exposure. Haemocyte proliferation was increased significantly in animals exposed for 1 and 7 days, whereas haemocyte lysate lysozyme activity decreased significantly after 1 and 3 days. In addition, TMP significantly increased haemolymph lactate dehydrogenase activity after 3 and 7 days. Regarding antioxidant enzymes, only a significant time-dependent effect on CAT activity was recorded. This study demonstrated that environmentally realistic concentrations of TMP affect haemocyte parameters in clams, suggesting that haemocytes are a useful cellular model for the assessment of the impact of TMP on bivalves.
Show more [+] Less [-]Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche Full text
2011
Pan, Ke | Wang, Wen-Xiong
Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope (δ¹³C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation.
Show more [+] Less [-]Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper Full text
2007
Liao, C.M. | Lin, C.M. | Jou, L.J. | Chiang, K.C.
The purpose of this study is to develop a mechanistic model to describe a conceptually new “flux-biological response” approach based on biotic ligand model (BLM) and Michaelis-Menten (M-M) kinetics to allow the linkage between valve closure behavior and sodium (Na) transport mechanism in freshwater clam Corbicula fluminea in response to waterborne copper (Cu). We test the proposed model against published data regarding Na uptake kinetics in rainbow trout and Na uptake profile in C. fluminea, confirming that the predictive model is robust. Here, we show that the predicted M-M maximum Cu internalization flux in C. fluminea is 0.369 μmol g-1 h-1 with a half-saturation affinity constant of 7.87 x 10-3 μM. Dynamics of Na uptake and valve closure daily rhythm driven by external Cu can also be predicted simultaneously. We suggest that this “Na transport-valve closure behavior” approach might provide the basis of a future design of biomonitoring tool. A new flux-biological response model can link valve closure and sodium transport mechanisms in freshwater clam in response to copper.
Show more [+] Less [-]How can environmental conditions influence dicofol genotoxicity on the edible Asiatic clam, Meretrix meretrix? Full text
2022
Ivorra, Lucia | Cruzeiro, Catarina | Ramos, Alice | Tagulao, Karen | Cardoso, Patricia G.
Genotoxic effects of dicofol on the edible clam Meretrix meretrix were investigated through a mesocosm experiment. Individuals of M. meretrix, were exposed to environmental concentration (D1 = 50 ng/L) and supra-environmental concentration (D2 = 500 ng/L) of dicofol for 15 days, followed by the same depuration period. DNA damage (i.e., strand breaks and alkali-labile sites) was evaluated at day 1, 7 and 15, during uptake and depuration, using Comet assay (alkaline version) and nuclear abnormalities (NAs) as genotoxicity biomarkers. The protective effects of dicofol against DNA damage induced by ex vivo hydrogen peroxide (H₂O₂) exposure were also assessed. Comet assay results revealed no significant DNA damages under dicofol exposure, indicating 1) apparent lack of genotoxicity of dicofol to the tested conditions and/or 2) resistance of the animals due to optimal adaptation to stress conditions. Moreover, ex vivo H₂O₂ exposure showed an increase in the DNA damage in all the treatments without significant differences between them. However, considering only the DNA damage induced by H₂O₂ during uptake phase, D1 animals had significantly lower DNA damage than those from other treatments, revealing higher protection against a second stressor. NAs data showed a decrease in the % of cells with polymorphic, kidney shape, notched or lobbed nucleus, along the experiment. The combination of these results supports the idea that the clams used in the experiment were probably collected from a stressful environment (in this case Pearl River Delta region) which could have triggered some degree of adaptation to those environmental conditions, explaining the lack of DNA damages and highlighting the importance of organisms’ origin and the conditions that they were exposed during their lives.
Show more [+] Less [-]