Refine search
Results 1-6 of 6
Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment
2018
Šojić Merkulov, Daniela V. | Despotović, Vesna N. | Banić, Nemanja D. | Armaković, Sanja J. | Finčur, Nina L. | Lazarević, Marina J. | Četojević-Simin, Dragana D. | Orčić, Dejan Z. | Radoičić, Marija B. | Šaponjić, Zoran V. | Čomor, Mirjana I. | Abramović, Biljana F.
A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO₂ nanoparticles and TiO₂/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharač, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO₂ and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO₂ and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed.
Show more [+] Less [-]Effects of the technical ingredient clomazone and its two formulated products on aquatic macrophytes
2021
Stevanović, Marija | Brkić, Dragica | Tomić, Tanja | Mihajlović, Varja | Đorđević, Tijana | Gašić, Slavica
One active ingredient can be a component of different types of formulations of pesticides, while the toxicity of its formulations may vary depending on various constituents used in the mixture. The present study focuses on evaluating the effects of the active ingredient clomazone and its formulations (Rampa® EC and GAT Cenit 36 CS, both containing 360 g a.i./l of clomazone) on non-target aquatic macrophytes. The two formulation types differ in their active ingredient release and presumed environmental impact. In order to cover different ecological traits, two species of aquatic macrophytes – the floating monocot Lemna minor and the rooted dicot Myriophyllum aquaticum, were used as test models. The results of this study revealed differences in the sensitivity of tested plants to clomazone. Based on the most sensitive parameters, M. aquaticum proved to be more sensitive than L. minor to the technical ingredient and both formulations. The species sensitivity distribution (SSD) approach that was tried out in an attempt to create a higher tier step of risk assessment of clomazone for primary producers indicates that tests on rooted macrophytes can add value in risk assessment of plant protection products. The capsule formulation of clomazone was less toxic than the emulsion for L. minor, but more toxic for M. aquaticum. The most toxic for L. minor was the emulsifiable concentrate formulation Rampa® EC, followed by technical clomazone (EC₅₀ 33.3 and 54.0 mg a.i./l, respectively), while the aqueous capsule suspension formulation GAT Cenit 36 CS did not cause adverse effects. On the other hand, the most toxic for M. aquaticum was the formulation GAT Cenit 36 CS, followed by technical clomazone and the formulation Rampa® EC, demonstrating a greater effect of the capsule formulation.
Show more [+] Less [-]Experimental Evidence for Using Vegetated Ditches for Mitigation of Complex Contaminant Mixtures in Agricultural Runoff
2020
Moore, Matthew T. | Locke, Martin A.
Feeding a growing population requires striking a balance between increasing production and decreasing environmental impacts in agricultural settings. We established 12 experimental mesocosms with silt loam atop a base of sand and examined the ability of three emergent aquatic plants common to the USA to remediate pesticides and nutrients in agricultural runoff. Mesocosms were planted in monocultures of Myriophyllum aquaticum, Polygonum amphibium, and Typha latifolia, or left unvegetated to serve as controls. All mesocosms were amended with target concentrations of 10 mg L⁻¹ (each) nitrate, ammonium, and orthophosphate; 20 μg L⁻¹ (each) of the pesticides propanil and clomazone; and 10 μg L⁻¹ of the pesticide cyfluthrin. After a 6-h-simulated agricultural runoff with amended water, mesocosms sat idle for 48 h before flushing with unamended water for another 6 h. Outflow water samples were collected and analyzed for contaminant concentrations. Most significant differences between vegetated mesocosms and controls occurred when comparing mean contaminant transfer/transformation rates post-amendment. Differences among plant species occurred regarding retention of dissolved nutrients orthophosphate, ammonium, and nitrate. Similarly, all three plant species retained more propanil than controls during post-amendment (8–48 h), but individual plant differences occurred with regard to clomazone and cyfluthrin retention. While variation in mitigation of specific dissolved components of nutrients suggests different mechanisms involved in nutrient cycling within our mesocosms, consistent overall total nutrient and pesticide reduction during the post-amendment period indicate that holding runoff in vegetated ditches may reduce transport of agricultural contaminants to downstream aquatic ecosystems.
Show more [+] Less [-]Ecotoxicological assessment of Uruguay River and affluents pre- and post-pesticides’ application using Caenorhabditis elegans for biomonitoring
2021
Kuhn, Eugênia Carla | Jacques, Maurício Tavares | Teixeira, Daniela | Meyer, Sören | Gralha, Thiago | Roehrs, Rafael | Camargo, Sandro | Schwerdtle, Tanja | Bornhorst, Julia | Ávila, Daiana Silva
Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides’ application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides’ samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides’ samples impaired C. elegans reproduction and post-pesticides samples reduced worms’ survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides’ application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.
Show more [+] Less [-]Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal
2019
Kupski, Larine | Salcedo, Gabriela M. | Caldas, Sergiane S. | de Souza, Taiana D. | Furlong, Eliana B. | Primel, Ednei G.
This study proposed the optimization of a laccase-mediator system to reduce pesticide levels (bentazone, carbofuran, diuron, clomazone, tebuconazole, and pyraclostrobin) on aqueous medium. Firstly, the mediator concentration of 1 mM was established (average removal of 36%). After that, seven redox-mediating compounds, namely, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, caffeic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, protocatechuic acid, and vanillin, were compared regarding their removal efficiency. The highest removal (77%) was achieved with the laccase-vanillin system. After this screening, the optimization was carried out by a 2² full factorial design. Variables under study were the enzyme (laccase) activity and vanillin concentration. Maximum removal (53–85%) was achieved with 0.95 U/mL laccase and 1.8 mM vanillin. Pesticide removal in reaction media was fitted to the first-order kinetics equation with an average half-time life of 2.2 h. This is the first study of the use of this natural compound as a mediator in the degradation of the pesticides under investigation. The results of this study contribute, with alternative methods, to decrease pesticide levels since they are highly persistent in aqueous samples and, as a result, mitigate the environmental impact.
Show more [+] Less [-]Pesticide pressure and fish farming in barrage pond in Northeastern France. Part II: residues of 13 pesticides in water, sediments, edible fish and their relationships
2013
Lazartigues, Angélique | Thomas, Marielle | Cren-Olivé, Cécile | Brun-Bellut, Jean | Le Roux, Yves | Banas, Damien | Feidt, Cyril
Residues of pesticides in fish farming productions from barrage ponds are seldom studied in spite of increasing health questionings and environmental concerns. The purpose of this study is to establish the pesticide contamination profiles of sediments and edible fish from five ponds in Northeastern France. Multi-residues method and liquid chromatography–tandem mass spectrometry analysis were used to quantify 13 pesticides (azoxystrobin, carbendazim, clomazone, diflufenican, dimethachlor, fluroxypyr, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl). Ten sediments and 143 muscles samples were analysed, corresponding to two successive fishing campaigns (first fishing date and second fishing date (P2), about 1 year later) on five sites (noted C-0, C-25, C-45, C-75 and C-85 to express the increasing gradient of crop area). Isoproturon was present in all sediments samples (1.8–56.4 μg/kg dry weight). During P2 period, carbendazim was quantified in the fish of site C-0 (0.09 ± 0.02, 0.2 ± 0.1 and 0.17 ± 0.06 μg/kg wet weight (ww) for roach, carp and perch, respectively). Metazachlor was only quantified in perch of the site C-25 (0.13 ± 0.02 μg/kg ww). Concentrations of isoproturon were similar for the sites C-45 and C-75 with 0.4 ± 0.1 and 0.75 ± 0.06 μg/kg ww for carp and perch, respectively. Contamination of fish reflected generally concentrations in surroundings. Isoproturon was the most concentrated and its main source was water for perch while carp was exposed through both water and sediments, highlighting their life strategies in pond.
Show more [+] Less [-]