Refine search
Results 1-10 of 58
Impact of elevated O3 trembling aspen (Populus tremuloides MICHX.) leaf epicuticular waxes and elemental composition of leaves
2002
Mankovska, B. (Forest Research Institute, Zvolen (Slovak Republic)) | Karnosky, D. F. | Percy, K. | Ermakova, E. | Frontasyeva, M.
Foliage of three trembling aspen clones differing in O3 tolerance from Rhinelander, Kenosha and Kalamazoo were examined for 24 elements in the year 2001 and they were analyzed by INAA at reactor IBR-2, by AAS Varian 400 and by elemental analyzer LECO SC 132 and SP 228. In the fofliage of trembling aspen we found no statistically significant difference in the concentration of 22 elements except for K and Ni between clones. For the concentrations of elements between localities we found statistically significant difference for Al, Ba, Ca, Cd, Cl, Co, Cu, La, Mo, Na, Ni, Pb, Sm, Sr and Zn
Show more [+] Less [-]Growth responses of two silver birch clones to elevated CO2 and O3 during three years of exposure in OTCs
2002
Riikonen, J. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station) | Lindsberg, M. M. | Peltonen, P. | Oksanen, E. | Syrjala, L. | Holopainen, T. | Vapaavuori, E.
Atmospheric carbon dioxide (CO2) and ozone (O3) are increasing by 1-2% per year and are expected to double by the year 2100 compared to the end of the last millennium. Carbon dioxide at twice the current atmospheric concentrations has the potential to increase the productivity of forest trees while increasing ozone is expected to cause significant reductions in growth. The present study was undertaken to investigate the effects of CO2 and O3, singly or in combination, on growth and allocation of two European silver birch (Betula pendula Roth) clones under field conditions to verify the future predicitons in regard to silver birch. Our data show that growth of clone 80 was benefitted by ambient CO2 singly and in combination with ambient O3. Clone 4 was more responsive to ambient O3 than clone 80 which is opposite to results from previous pot experiments with these clones
Show more [+] Less [-]Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound
2013
Mortazavi, Behzad | Horel, Agota | Anders, Jennifer S. | Mirjafari, Arsalan | Beazley, Melanie J. | Sobecky, Patricia A.
We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg−1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons.
Show more [+] Less [-]Identification and quantification of a novel nitrate-reducing community in sediments of Suquía River basin along a nitrate gradient
2010
Reyna, Luciana | Wunderlin, Daniel Alberto | Genti-Raimondi, Susana
We evaluated the molecular diversity of narG gene from Suquía River sediments to assess the impact of the nitrate concentration and water quality on the composition and structure of the nitrate-reducing bacterial community. To this aim, a library of one of the six monitoring stations corresponding to the highest nitrate concentration was constructed and 118 narG clones were screened. Nucleotide sequences were associated to narG gene from alpha-, beta-, delta-, gammaproteobacteria and Thermus thermophilus. Remarkably, 18% of clones contained narG genes with less than 69% similarity to narG sequences available in databases. Thus, indicating the presence of nitrate-reducing bacteria with novel narG genes, which were quantified by real-time PCR. Results show a variable number of narG copies, ranging from less than 1.0 × 102 to 5.0 × 104 copies per ng of DNA, which were associated with a decreased water quality index monitored along the basin at different times.
Show more [+] Less [-]Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community
2009
Tervahauta, Arja I. | Fortelius, Carola | Tuomainen, Marjo | Akerman, Marja-Leena | Rantalainen, Kimmo | Sipilä, Timo | Lehesranta, Satu J. | Koistinen, Kaisa M. | Kärenlampi, Sirpa | Yrjälä, Kim
Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p <= 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils. Birch can enhance degradation of PAH compounds in the rhizosphere.
Show more [+] Less [-]Biodiversity buffer the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau, Southwest China
2022
Wang, Hao | Zhang, Xiaolin | Shan, Hang | Chaochao lv, | Ren, Wenjing | Wen, Zihao | Tian, Yuqing | Weigel, Benjamin | Ni, Leyi | Cao, Te
Increasing eutrophication poses a considerable threat to freshwater ecosystems, which are closely associated with human well-being. As important functional entities for freshwater ecosystems, submerged macrophytes have suffered rapidly decline with eutrophication. However, it is unclear whether and how submerged macrophytes maintain their ecological functions under increasing eutrophication stress and the underlying patterns in the process. In the current study, we conducted an extensive survey of submerged macrophytes in 49 lakes and reservoirs (67% of them are eutrophic) on the Yunnan-Guizhou Plateau of southwestern China to reveal the relationship between submerged macrophyte biodiversity and ecosystem functioning (BEF) under eutrophication stress. Results showed that submerged macrophytes species richness, functional diversity (FD), and β diversity had positive effects on ecosystem functioning, even under eutrophication. Functional diversity was a stronger predictor of community biomass than species richness and β diversity, while species richness explained higher coverage variability than FD and β diversity. This suggests that species richness was a reliable indicator when valid functional traits cannot be collected in considering specific ecological process. With increasing eutrophication in water bodies, the mechanisms underlying biodiversity-ecosystem functioning evolved from “niche complementarity” to “selection effects”, as evidenced by decreased species turnover and increased nestedness. Furthermore, the relative growth rate, specific leaf area, and ramet size in trade-off of community functional composition became smaller along eutrophication while flowering duration and shoot height became longer. This study contributes to a better understanding of positive BEF in freshwater ecosystems, despite increasing anthropogenic impacts. Protecting the environment remained the effective way to protect biodiversity and corresponding ecological functions and services. We hope focus on specific eco-functioning in future studies so as to effective formulation of management plans.
Show more [+] Less [-]Clonal integration in Phragmites australis alters soil microbial communities in an oil-contaminated wetland
2020
Xue, Wei | Wang, Wanli | Yuan, Qing-Ye | Yu, Fei-Hai
Clonal plants can share information and resources among connected ramets (asexual individuals). Such clonal integration can promote ramet growth, which may further influence soil microbial communities in the rooting zone. Crude oil contamination can negatively affect plant growth and alter soil microbial community composition. However, we still know little about how clonal integration affects soil microbial communities, especially under crude oil contamination. In a coastal wetland, ramets of the rhizomatous plant Phragmites australis in circular plots (60 cm in diameter) were subjected to 0, 5 and 10 mm depth of crude oil, and the rhizomes at the edge of the plots were either severed (preventing clonal integration) or left intact (allowing clonal integration). After three years of treatment, we analysed in each plot soil physiochemical properties and soil microbial community composition. The alpha-diversity of the soil microbial communities did not differ between intact and severed plots, but was overall lower in 10-mm than in 0-mm and 5-mm oil plots. Considering all three oil treatments together, soil microbial community dissimilarity (beta-diversity) was positively correlated with soil property distance in both severed and intact plots. Considering the three oil treatments separately, this pattern was also observed in 10-mm oil plots, but not in 0-mm or 5-mm oil plots. The soil microbial community composition was more sensitive to the oil addition than to the clonal integration. Moreover, the relative abundance of the nitrogen-cycling bacterial taxa was lower in intact than in severed plots, and that of the oil-degrading bacterial taxa increased with increasing oil-addition levels. Our results indicate that clonal integration and oil contamination can influence soil microbial communities independently through changing the relative abundance of the component bacteria taxa, which has important implications for ecosystem functions of the soil food web mediated by clonal plants.
Show more [+] Less [-]Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata
2013
Jiang, Xiaodong | Yang, Wei | Zhao, Shiye | Liang, Huishuang | Zhao, Yunlong | Chen, Liqiao | Li, Rui
Cyanobacterial blooms are becoming potent agents of natural selection in aquatic ecosystems because of their high production of some toxins and increased frequency in recent decades with eutrophication and climate change. Maternal exposure to the toxic Microcystis aeruginosa significantly increased the intrinsic rates of population increase, average life span, and net reproductive rates of a clone of the planktonic grazer Daphnia carinata in an offspring environment where cyanobacteria were present, but not for two additional clones. Offspring from mothers exposed to M. aeruginosa had lower intrinsic rates of population increase, average life span, and net reproductive rates than individuals from unexposed mothers when fed exclusively a green alga. These results suggest that benefits, costs, and clonal variations of maternal effects of inducible tolerance should be considered when trying to understand ecological consequences of cyanobacterial blooms since they can shape the trophic interactions between cyanobacteria and daphnids.
Show more [+] Less [-]Growth, leaf traits and litter decomposition of roadside hybrid aspen (Populus tremula L.×P. tremuloides Michx.) clones
2011
Nikula, Suvi | Manninen, Sirkku | Vapaavuori, Elina | Pulkkinen, Pertti
Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula×P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15m from the motorway. Although no significant distance×clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling.
Show more [+] Less [-]DNA damage in Populus tremuloides clones exposed to elevated O3
2010
Tai, Helen H. | Percy, Kevin E. | Karnosky, David F.
The effects of elevated concentrations of atmospheric tropospheric ozone (O3) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO2) were examined. Growing season mean hourly O3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O3 concentrations were 79 and 89 ppb, respectively. Elevated CO2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O3 and CO2 in combination with O3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O3 tolerance or sensitivity. Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.
Show more [+] Less [-]