Refine search
Results 1-10 of 88
Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater
2021
Dar, Afzal Ahmed | Pan, Bao | Qin, Jiani | Zhu, Qiuhui | Lichtfouse, Eric | ʻUs̲mān, Muḥammad | Wang, Chuanyi
This review is intended to evaluate the use of ferrate (Fe(VI)), being a green coagulant, sustainable and reactive oxidant, to remove micro pollutants especially pharmaceutical pollutants in contaminated water. After a brief description of advanced oxidation processes, fundamental dimensions regarding the nature, reactivity, and chemistry of this oxidant are summarized. The degradation of contaminants by Fe(VI) involves several mechanisms and reactive agents which are critically evaluated. The efficiency and chemistry of Fe(VI) oxidation differs according to the reaction conditions and activation agent, such as soluble Fe(VI) processes, which involve Fe(VI), UV light, and electro-Fe(VI) oxidation. Fe(VI) application methods (including single dose, multiple doses, chitosan coating etc), and Fe(VI) with activating agents (including sulfite, thiosulfate, and UV) are also described to degrade the micro pollutants. Besides, application of Fe(VI) to remove pharmaceuticals in wastewater are intensely studied. Electrochemical prepared Fe(VI) has more wide application than wet oxidation method. Meanwhile, we elaborated Fe(VI) performance, limitations, and proposed innovative aspects to improve its stability, such as the generation of Fe(III), synergetic effects, nanopores entrapment, and nanopores capsules. This study provides conclusive direction for synergetic oxidative technique to degrade the micro pollutants.
Show more [+] Less [-]Selective binding behavior of humic acid removal by aluminum coagulation
2018
Jin, Pengkang | Song, Jina | Yang, Lei | Jin, Xin | Wang, Xiaochang C.
The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH < 7, and the reaction rate increased as the pH increased from 2 to 6. While at pH = 7, most of the dosed aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH)₃₍ₛ₎ formation. Differentiating the change of functional groups of HA by ¹H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future.
Show more [+] Less [-]Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant
2020
Singh, Vikash | Srivastava, Vimal Chandra
In the present work, low-cost and efficient iron oxide nanoparticle incorporated on mesoporous biochar was prepared from effluent treatment plant (ETP) sludge collected from the textile industry. This sludge contains a higher amount of Fe due to the use of ferric chloride as a coagulant in the treatment of wastewater generated during the process. The raw sludge and prepared biochar was extensively examined by various sophisticated techniques like XRF, XRD, BET, TGA, XPS, RAMAN, FTIR, FESEM, TEM, and VSM. TEM and XRD analysis confirms the presence of iron oxide nanoparticles on mesoporous biochar. The prepared biochar was found to possess BET surface area of 91 m² g⁻¹. Several parameters like pH, dose, initial concentration, temperature and time were optimized for the adsorptive removal of ofloxacin (OFL) from aqueous solution. Biochar (named as BTSFe) achieved ≈96% removal efficiency of OFL with a maximum adsorption capacity (qₘ) of 19.74 mg g⁻¹ at optimum condition. π-π electron–donor-acceptor and H bonding were the major mechanisms responsible for the OFL adsorption. Kinetic and equilibrium thermodynamic study of showed that the adsorption of OFL was represented by the pseudo-second-order kinetics model, and the process was exothermic and spontaneous. Additionally, Redlich-Peterson and Freundlich isotherms best fitted the experimental data indicating multilayer adsorption phenomenon. Biochar was magnetically separated and thermally regenerated after each cycle for five times with a nominal overall decrease of ≈8% in removal efficiency. Leaching of iron during the adsorption process was also checked and found to be within the permissible limit. This study provides an alternative application of the textile industry sludge as an efficient, low-cost biochar for the removal of emerging pharmaceutical compounds.
Show more [+] Less [-]Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides
2016
Zou, Yidong | Wang, Xiangxue | Chen, Zhongshan | Yao, Wen | Ai, Yuejie | Liu, Yunhai | Hayat, Tasawar | Alsaedi, Ahmed | Alharbi, Njud S. | Wang, Xiangke
With the development and application of graphene oxides (GO), the potential toxicity and environmental behavior of GO has become one of the most forefront environmental problems. Herein, a novel nanoscale layered double hydroxides (glycerinum-modified nanocrystallined Mg/Al layered double hydroxides, LDH-Gl), layered double oxides (calcined LDH-Gl, LDO-Gl) and metallic oxide (TiO2) were synthesized and applied as superior coagulants for the efficient removal of GO from aqueous solutions. Coagulation of GO as a function of coagulant contents, pH, ionic strength, GO contents, temperature and co-existing ions were studied and compared, and the results showed that the maximum coagulation capacities of GO were LDO-Gl (448.3 mg g−1) > TiO2 (365.7 mg g−1) > LDH-Gl (339.1 mg g−1) at pH 5.5, which were significantly higher than those of bentonite, Al2O3, CaCl2 or other natural materials due to their stronger reaction active and interfacial effect. The presence of SO32− and HCO3− inhibited the coagulation of GO on LDH-Gl and LDO-Gl significantly, while other cations (K+, Mg2+, Ca2+, Ni2+, Al3+) or anion (Cl−) had slightly effect on GO coagulation. The interaction mechanism of GO coagulation on LDO-Gl and TiO2 might due to the electrostatic interactions and strong surface complexation, while the main driving force of GO coagulation on LDH-Gl might be attributed to electrostatic interaction and hydrogen bond, which were further evidenced by TEM, SEM, FT-IR and XRD analysis. The results of natural environmental simulation showed that LDO-Gl, TiO2 or other kinds of natural metallic oxides could be superior coagulants for the efficient elimination of GO or other toxic nanomaterials from aqueous solutions in real environmental pollution cleanup.
Show more [+] Less [-]Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides
2017
Yao, Wen | Wang, Jian | Wang, Pengyi | Wang, Xiangxue | Yu, Shujun | Zou, Yidong | Hou, Jing | Hayat, Tasawar | Alsaedi, Ahmed | Wang, Xiangke
With the extensive application of graphene oxide (GO), it is noticeable that part of GO is directly/indirectly released into the environment and widespread research indicated that it had adverse influences on human health and ecological balance. In this work, a novel nanobelt-like Ca/Al layered double hydroxides (CA-LDH) was synthesized and applied as efficient coagulant for the removal of GO from aqueous solutions. The results indicated that neutral pH, co-existing cations and higher temperature were beneficial to the coagulation of GO. The sequence of cation effect for promoting of GO coagulation was Ca2+ > Mg2+ > K+ > Na+, whereas the effect of anions on GO coagulation was PO43− > CO32− > SO42− > Cl−. Comparing with anions, the cations showed more dominate effect for GO coagulation than anions. Hydrogen bonds and electrostatic interaction were the main coagulation mechanisms for GO coagulation, which were evidenced by FT-IR and XPS analysis. Specifically, for the first time, the reclaimed product of CA-LDH after GO coagulation (CA-LDH + GO) was applied as adsorbents for the secondary application in the removal of heavy metal ions from aqueous solutions. Interestingly, the CA-LDH + GO still had high adsorption capacities, i.e., the maximum adsorption capacities (qmax) for Cu(II), Pb(II), and Cr(VI) were 122.7 mg/g, 221.2 mg/g and 64.4 mg/g, respectively, higher than other similar materials. This paper highlighted the LDH-based nanomaterials are promising materials for the elimination of environmental pollutants and the migration and transformation of carbon nanomaterials in the natural environment.
Show more [+] Less [-]Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant
2021
Bahrodin, Muhammad Burhanuddin | Zaidi, Nur Syamimi | Hussein, Norelyza | Sillanpää, Mika | Prasetyo, Dedy Dwi | Syafiuddin, Achmad
PURPOSE OF REVIEW: The use of conventional chemical coagulant in treatment of wastewater is gaining great attention. Drawbacks related to the prolonged effects on human health and environment due to the generation of by-product non-biodegradable sludge are becoming the latest topics. Transition from chemical to natural coagulant can be a good strategy to reduce the aforementioned drawbacks. Therefore, this review aims to provide critical discussions on the use of natural coagulant along with the comparative evaluation over the chemical coagulant. RECENT FINDINGS: Treatment performances by chemical and natural coagulant have been reviewed on various types of wastewater with different success rates. Based on this review, a transition from the use of chemical to natural coagulant is highly suggested as the performance of the natural coagulant is comparable to that of the chemical coagulant and in some cases even better. The comparative advantages and disadvantages also convinced that the natural coagulant stands a great chance to be used as an alternative over the chemical coagulant. Though the current utilization of natural coagulant is encouraging, three main aspects were overlooked by researchers: active coagulant agent, extraction, and optimization due to different wastewater characteristics. Furthermore, delving into these aspects could clarify the uncertainties on the natural coagulant. Hence, it makes this transition a prospect of green technology with sustainable application towards wastewater treatment.
Show more [+] Less [-]Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes
2022
De Maman, Rafaela | da Luz, Vilson Conrado | Behling, Laura | Dervanoski, Adriana | Dalla Rosa, Clarissa | Pasquali, Gean Delise Leal
The indigo blue dye is widely used in the textile industry, specifically in jeans dyeing, the effluents of which, rich in organic pollutants with recalcitrant characteristics, end up causing several environmental impacts, requiring efficient treatments. Several pieces of research have been conducted in search of effective treatment methods, among which is electrocoagulation. This treatment consists of an electrochemical process that generates its own coagulant by applying an electric current on metallic electrodes, bypassing the use of other chemical products. The purpose of this study was to evaluate the potential use of iron slag in the electrocoagulation of a synthetic effluent containing commercial indigo blue dye and the effluent from a textile factory. The quantified parameters were color, turbidity, pH, electrical conductivity, sludge generation, phenol removal, chemical oxygen demand (COD), and total organic carbon (TOC). The electrocoagulation treatment presented a good efficiency in removing the analyzed parameters, obtaining average removal in the synthetic effluent of 85% of color and 100% of phenol after 25 min of electrolysis. For the effluent from the textile factory, average reductions of 80% of color reaching 177.54 mg Pt CoL⁻¹, 91% of turbidity reaching 93.83 NTU (nephelometric turbidity unit), 100% of phenol, 55% of COD with a final concentration of 298.8 mg O₂ L⁻¹, and 73% of TOC with a final concentration of 56.21 mg L⁻¹, in 60 min of electrolysis. The reduced time for removal of color and phenolic compounds in synthetic effluent demonstrates the complexity of treating the real effluent since to obtain removals of the same order a 60-min period of electrolysis was necessary. The results obtained demonstrate the potential of using iron slag as an electrode in the electrocoagulation process in order to reuse industrial waste and reduce costs in the treatment and disposal of solid waste. Thus, the slag can be seen as an alternative material to be used in electrocoagulation processes for the treatment of effluents from the textile industry under the experimental conditions presented, its only limitation being the fact that it is a waste and therefore does not have a standardization in the amounts of iron present in the alternative electrodes.
Show more [+] Less [-]Biodegradable Chelator-Assisted Washing and Stabilization of Arsenic-Contaminated Excavated Soils
2022
Rahman, Shafiqur | Jii, Naoyuki | Ni, Shengbin | Harada, Yasuhiro | Mashio, Asami S. | Begum, Zinnat Ara | Rahman, Ismail M. M. | Hasegawa, Hiroshi
Excavated soils from construction activities contaminated with geogenic arsenic (As) are increasing concerns owing to after disposal impact on ecosystem and human health. Washing remediation with chelators, e.g., ethylenediaminetetraacetic acid (EDTA), has been evaluated widely to treat contaminated soil. However, prolonged persistence and noxiousness of EDTA and its homologs evoke eco-concerns. Herein, the efficiency of ethylenediamine N,N'-disuccinic acid (EDDS) and 3-hydroxy-2,2'-imino disuccinic acid (HIDS) was evaluated to treat As-contaminated excavated soil as eco-compliant alternatives to EDTA. Besides, the post-treatment preferences for the chelator-washed suspension and soil residue were also assessed to immobilize eluted-As and suppress subsequent As-leaching, respectively. The efficiency of chelators toward the extraction of As was positively correlated with washing variables (e.g., washing time, solution pH, chelator concentration, liquid-to-soil ratio, and shaking speed) and optimized for maximum As-removal. Biodegradable chelator, HIDS (10 mmol L–¹, pH 11) showed better washing effectiveness among the tested chelators (duration, 12 h). The eluted-As in chelator-washed suspension was better immobilized with combined Feᴵᴵᴵ and Caᴵᴵ salt application blended with organic coagulant and polymer flocculant. Stabilization/solidification (S/S) of As-content in soil residues with cement-based binders was examined with or without the addition of Feᴵᴵᴵ. The cement amendments, except the ordinary Portland cement, Tuff-rock ace, and GS225, showed superior As-stabilization capability without Feᴵᴵᴵ-additives. The proposed combined remediation approach can be a green solution to recycle As-contaminated surplus soils for extensive geotechnical applications.
Show more [+] Less [-]Strategy for the advanced treatment of simulated tail water of dyeing wastewater based on a short-cut photocatalysis/algal degradation hybrid technology
2021
Refractory organic pollutants in tail water of dyeing wastewater treatment have aroused wide concern. Their efficient and cost-effective removal reduced their threat to public health and ecosystem. Herein, a novel short-cut photocatalysis/algal degradation-based hybrid technology was implemented in efficient removal of methylene blue (MB) in simulated tail water using reliable titanium dioxide and common Chlorella pyrenoidosa, and the mechanisms in processes were emphasized. The treatment efficiency was significantly improved via pretreatment before chemical and biological degradation. MB of 79.71% was concentrated as the adsorption of the modified titanium dioxide and the collection of titanium dioxide by inorganic coagulant. The supernatant with low concentration of MB after coagulation was able to be directly treated by Chlorella pyrenoidosa. MB of 93.7% was degraded and transformed to intermediates in short-cut photocatalysis under visible light in 1 h. The intermediates owning the low biological inhibition were easily further degraded by Chlorella pyrenoidosa in 6 days. Mechanism analysis implied that the modified titanium dioxide was not simple monolayer adsorption, and physical adsorption was dominant. The coagulant played an essential role of charge neutralization in collection of the modified titanium dioxide. The removal of photocatalytic intermediates was divided to fast adsorption of Chlorella pyrenoidosa, low desorption in lag period of algae, and gradual biodegradation that accompanied with the increase of algal cell quantity.
Show more [+] Less [-]Comparison of poly ferric chloride and poly titanium tetrachloride in coagulation and flocculation process for paper and cardboard wastewater treatment
2021
Zarei Mahmoudabadi, Tahereh | Ehrampoush, Mohammad Hassan | Talebi, Parvaneh | Fouladi-Fard, Reza | Eslami, Hadi
The current study investigated the efficiency of poly ferric chloride (PFC) and poly titanium tetrachloride (PTC) in coagulation-flocculation process for treatment of paper and cardboard wastewater. The effect of pH (5–11), coagulant concentrations (100–1000 mg/L), mixing rate (10–60 rpm), mixing time (5–25 min), and settling time (5–30 min) were examined. The results showed that the removal efficiency for turbidity, total suspended solids (TSS), and chemical oxygen demand (COD) by PFC and PTC coagulants increased with pH rising up to 9 for the former and 7 for the latter coagulant. Furthermore, the removal efficiency for the afore-mentioned parameters increased along with a 30 rpm increase in the mixing rate, while the mixing time reached 20 min. It was also found that the best removal efficiencies for turbidity, TSS, and COD by PFC under optimal conditions (pH 9, coagulant dose 800 mg/L, and settling time of 25 min) were 97.11%, 99.1%, and 84.91%, respectively. In addition, the removal efficiencies for PTC (optimal conditions of pH 7, coagulant dose 600 mg/L, and settling time of 15 min) were found to be 98.29%, 99.29%, and 86.42%, respectively. Water recovery and the produced sludge volume by PFC were 80% and 200 cm³, respectively, in the settling time of 25 min and for PTC were 81.5% and 185 cm³, respectively, in the settling time of 15 min. Costs of the coagulation-flocculation process for treatment 1 m³ of paper and cardboard wastewater using PTC and PFC were 0.42 $ and 0.32 $, respectively. Finally, it can be concluded that compared to PFC, PTC with higher settling rate has a greater efficiency for treatment of paper and cardboard wastewater.
Show more [+] Less [-]