Refine search
Results 1-10 of 716
Comparative kinetic desorption of 60Co, 85Sr and 134Cs from a contaminated natural silica sand column: Influence of varying physicochemical conditions and dissolved organic matter Full text
2006
Solovitch-Vella, N. | Garnier, J.-M. | Laboratoire d'étude radioécologique du milieu continental et marin (IRSN/DEI/SESURE/LERCM) ; Service d'étude et de surveillance de la radioactivité dans l'environnement (IRSN/DEI/SESURE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
International audience | In order to determine the mechanisms of the retention of 60Co, 85Sr and 134Cs in natural silica sand columns, desorption experiments were performed by changes of pH and ionic strength and by injection of natural organic matter (NOM). Injection of KCl (0.1 M) resulted in a high release of 60Co (60-100%) and 85Sr (72-100%) but a smaller release of 134Cs (31-66%). Only limited release of 60Co (66%) and 85Sr (71%) and no release of 134Cs were observed by injection of NOM. The different percentages of desorption were related to the chemical characteristics of the organic colloids previously retained in columns before the desorption step. The results evidenced different sorption processes on energetically heterogeneous surface sites. According to the initial conditions, the binding of the radionuclides to the solid phase resulted from weak and easily reversible sorption processes to strong association probably by inner sphere complexes. The rather weak release of 134Cs by KCl was attributed to the strong retention of 134Cs by clay coatings on the natural silica sand surfaces. © 2005 Elsevier Ltd. All rights reserved.
Show more [+] Less [-]Associations between blood heavy metal(loid)s and serum heme oxygenase-1 in pregnant women: Do their distribution patterns matter? Full text
2021
Li, Kexin | Wang, Bin | Yan, Lailai | Jin, Yu | Li, Zhiyi | An, Hang | Ren, Mengyuan | Pang, Yiming | Lan, Changxin | Chen, Junxi | Zhang, Yali | Zhang, Le | Ye, Rongwei | Li, Zhiwen | Ren, Aiguo
The relationship between heavy metal(loid)s exposure and oxidative stress damage is a matter of research interest. Our study aimed to investigate the distribution patterns of the nine heavy metal(loid)s in blood of pregnant women, including four toxic heavy metal(loid)s [arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg)] and five typical heavy metal(loid)s [manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)] in blood. Blood samples of 348 women were collected and their concentrations in the serum (sr) and blood cells (bc) were measured, as well as serum heme oxygenase-1 (HO-1) (an oxidative stress marker). Total blood (tb) concentrations of these metal(loid)s and serum-to-blood cell concentration ratios (sr/bc) were further calculated. We found Cu mainly accumulated in the serum compared to the blood cells with Cuˢʳ/ᵇᶜ = 2.30, whereas Co, Se, and As evenly distributed between these two fractions. Other metal(loid)s mainly concentrated in the blood cells. Coˢʳ, Cuˢʳ, Cuᵇᶜ, Mnᵇᶜ, Znᵇᶜ, Cdᵇᶜ, Coᵗᵇ, Cuᵗᵇ, Mnᵗᵇ, Znᵗᵇ, Cdᵗᵇ, and Cuˢʳ/ᵇᶜ were negatively associated with serum HO-1, whereas Asˢʳ, Asᵇᶜ, Asᵗᵇ, Znˢʳ/ᵇᶜ, Cdˢʳ/ᵇᶜ, and Hgˢʳ/ᵇᶜ were positively, indicating of their potential toxicity. We concluded that the distribution patterns of blood heavy metal(loid)s, in particular for Cd, Hg and Zn, which either increased in serum or decreased in blood cells, might be associated with elevated serum oxidative stress, should be considered in environmental health assessments.
Show more [+] Less [-]Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt) Full text
2020
Shaheen, Sabry M. | Antoniadis, Vasileios | Kwon, Eilhann | Song, Hocheol | Wang, Shan-Li | Hseu, Zeng-Yei | Rinklebe, Jörg
The aim of this study was to assess the soil contamination caused by potentially toxic elements (Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, V, and Zn) using various indices and the associated risk of human health for adults and children in selected soils from Germany (Calcic Luvisols, Tidalic Fluvisols, Haplic Gleysols, and Eutric Fluvisols) and Egypt (Haplic Calcisols, Sodic Fluvisols, and Eutric Fluvisols). Soil contamination degree has been assessed using indices such as contamination factor (CF), pollution load index (PLI), geo-accumulation index (Igₑₒ), and enrichment factor. We also assessed the health risk for children and for male and female adults. Chromium, Cu, As, Mo, Ni, Se, and Zn in the German Fluvisols had high CF of >6, while in the Egyptian Fluvisols Se, Mo, As, and Al revealed a high CF. The PLI (1.1–5.2) was higher than unity in most soils (except for Tidalic Fluvisols), while the most important contributor was Se, followed by Mo and As in the Egyptian Fluvisols, and by Cr, Cu, and Zn in the German Fluvisols. The median value of hazard index (HI) for children in the studied soils indicated an elevated health risk (higher than one), especially in the German Fluvisols (HI = 4.0–29.0) and in the Egyptian Fluvisols (HI = 2.2–5.2). For adults, median HIs in all soils were lower than unity for both males and females. The key contributor to HI was As in the whole soil profiles, accounting for about 59% of the total HIs in all three person groupings. Our findings show that in the studied multi-element contaminated soils the risk for children’s health is higher than for adults; while mainly As (and Al, Cr, Cu, and Fe) contributed significantly to soil-derived health risk.
Show more [+] Less [-]Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam Full text
2020
Nguyen, Binh Thanh | Do, Dung Doan | Nguyen, Tong Xuan | Nguyen, Vinh Ngoc | Phuc Nguyen, Duong Thuy | Nguyen, My Hoang | Thi Truong, Huong Thu | Dong, Hao Phu | Le, Anh Hung | Bach, Quang-Vu
The current study was conducted to (1) examine seasonal and spatial distribution of heavy metals and metalloid in sediment from the Saigon River and (2) apportion and quantify their pollution sources. Ninety-six sediment samples were taken in the rainy and dry season on 13 sampling sites, distributed over the lower reaches of the River, to analyze for exchangeable concentration of 11 heavy metals and metalloid (Al, B, Cd, Co, Fe, In, Mn, Ni, Pb, Sr, and Zn), pH, EC, organic carbon content, and particle-size distribution. Generally, the concentration of 11 elements was ranked in the order Mn > Al > Fe > Zn > Sr > In > B > Ni > Co > Pb > Cd. Hierarchical cluster analysis grouped 13 sampling sites into two parts based on the similar concentration of the 11 elements. Three-way analysis of variance showed that the total exchangeable concentration of 11 elements was significantly higher in the rainy season than in the dry season and in the upper part than in the lower part of the river. Principal component analysis/factor analysis and correlation analysis revealed that three pollution sources (PS) may contribute to enriching the 11 examined elements in the sediment. These sources included (PS1) from catchment through water erosion over natural areas, explaining 83%, (PS2) mixed sources from catchment through water erosion over agricultural fields and inside Ho Chi Minh City, accounting for 6%, and (PS3) mixed sources from lowland areas, explaining 7.8% of the total variance of the elements. In brief, the sediment concentration of 11 metals and metalloid varied with season and space and three major pollution sources from river catchment, inside Ho Chi Minh City, and lowland contributively enriched the elements in the sediment of the River.
Show more [+] Less [-]Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities Full text
2020
Turna Demir, Fatma | Yavuz, Mustafa
Heavy metal contamination is a serious environmental problem commonly monitored in various organisms. Small wild rodents are ideal biological monitors to show the extent of environmental pollution. The aim of this study was to evaluate the adverse effects of marble and stone quarries on the Levant vole, Microtus guentheri, inhabiting some polluted sites. In this context, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze distribution of thirteen heavy metals (Fe, Al, Zn, Cu, Cr, Mn, Ni, B, Pb, As, Co, Cd, and Hg) in the organs (skins, bones, muscles, livers and kidneys) of the biological specimens, and the comet assay revealed DNA damage in blood lymphocytes for the first time. This study was conducted at close to the marble and stone quarries at Korkuteli, Antalya-Turkey during spring, summer, autumn (2017) and winter (2018) seasons. In spring and summer, genetic damage in blood lymphocytes from all polluted sites (sites 1–5) was significantly higher than that of controls, while in autumn it was higher in samples from three sites (sites 3–5). In terms of heavy metal distribution in organs, we found depositions of Fe, Al, Zn, Ni, Mn, Cr, Co, As and Pb primarily in the skin with its derivatives, Cu and Cd deposits in the kidney, Cu, Cd and B deposits in the liver, and As and Pb depositions in the bones. The study shows that certain organs (especially skin with its derivatives) and blood lymphocytes of Levant vole can be used as ideal indicators of heavy metal pollution. Our results suggest that the Korkuteli area could already be under the threat of heavy metal pollution.
Show more [+] Less [-]Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city Full text
2020
Tepanosyan, Gevorg | Sahakyan, Lilitʻ | Maghakyan, Nairuhi | Saghatelyan, Armen
Mining activities change the chemical composition of the environment and have negative reflection on people’s health and there is no single measure to deal with adverse consequences of mining activities, as each case is specific and needs to be understood and mitigated in a unique way. In this study, the combination of compositional data analysis (CoDA), k-means algorithm, hierarchical cluster analysis applied to reveal the geochemical associations of potentially toxic elements (PTE) in soil of Alaverdi city (Armenia) (Ti, Fe, Ba, Mn, Co, V, Pb, Zn, Cu, Cr, Mo, As). Additionally, to assess PTE-induced health risk, two commonly used approaches were used. The obtained results show that the combination of CoDA and machine learning algorithms allow to identify and describe three geochemical associations of the studied elements: the natural, manmade and hybrid. Moreover, the revealed geochemical associations were linked to the natural pattern of distribution of the element concentrations including the influence of the natural mineralization of the parent rocks, as well as the emission from the copper smelter and urban management related activities. The health risk assessment using the US EPA method demonstrated that the observed contents of studied elements are posing a non-carcinogenic risk to children in the entire territory of the city. In the case of adults, the non-carcinogenic risk was identified in areas situated close to the copper smelter. The Summary pollution index (Zc) values were in line with the results of the US EPA method and indicated that the main residential part of the city was under the hazardous pollution level suggesting the possibility of increase in the overall incidence of diseases among frequently ill individuals, children with chronic diseases and functional disorders of vascular system. The obtained results indicated the need for further in-depth studies with special focus on the synergic effect of PTE.
Show more [+] Less [-]Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF Full text
2020
do Nascimento, Clístenes Williams Araujo | Hesterberg, Dean | Tappero, Ryan | Nicholas, Sarah | da Silva, Fernando Bruno Vieira
Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg⁻¹). Synchrotron micro X-ray fluorescence (μ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The μ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.
Show more [+] Less [-]Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf Full text
2019
Liu, Ming | Chen, Jingbo | Sun, Xueshi | Hu, Zhizhou | Fan, Dejiang
The concentration and speciation of heavy metals (Cu, Co, Ni, Zn, Cr, Pb and Cd) were studied in surface sediment from the Yangtze River(YR)to the East China Sea (ECS) shelf. The results showed that high contents of metals were found in the YR estuary (YRE) and in the nearshore muddy area, while lower concentrations were found in the YR channel and the ECS shelf. However, after standardization, the total content of most heavy metals from the YR showed little change or slightly increased during the transport process from the river to the estuary but decreased significantly outside the estuary, especially in the sediments of the ECS shelf. The residual fraction is the dominant fraction for all the metals, while the oxidizable and reducible fractions are the most important forms of the nonlithogenic fractions. The total amount of heavy metals from the YR to the continental shelf is mainly affected by the filtration of the estuary and the barrier impacts of the coastal current in the ECS. The environmental physicochemical conditions that vary significantly in the turbidity zone greatly influence the associated forms of metals. The metals in the acid-soluble fraction are mostly affected by the pH change in the sediment and the discharge of human activities, while the reducible fraction is significantly affected by the bottom water DO. The oxidizable fraction was affected by oxidation-reduction potential (ORP), primary productivity, as well as OM content. Therefore, with changes in the physicochemical conditions of the environment, the metals have undergone significant changes in their speciation from the YR to the ECS shelf. Various complex effects in the estuary area have not only a large filtration effect on the total amount of metals but also a major impact on the geochemical forms of the metals.
Show more [+] Less [-]Bioturbation effects on metal release from contaminated sediments are metal-dependent Full text
2019
Xie, Minwei | Simpson, Stuart L. | Wang, Wen-Xiong
Metal flux measurements inform the mobility, potential bioavailability and risk of toxicity for metals in contaminated sediments and therefore is an important approach for sediment quality assessment. The binding and release of metals that contribute to the net flux is strongly influenced by the presence and behaviors of benthic organisms. Here we studied the effects of bioturbation on the mobility and efflux of metals from multi-metal contaminated sediments that inhabited by oligochaete worms or both worms and bivalves. Presence of bivalves enhanced the release of Mn, Co, Ni and Zn but not for copper and chromium, which is likely due to the high affinities of copper and chromium for the solid phase. Metals in the overlying water were primarily associated with fractions smaller than 10 kDa, and the fractionation of all metals were not affected by the presence of the bivalve. Metal fluxes attributed to different processes were also distinguished, and the bioturbation induced effluxes were substantially higher than the diffusive effluxes. Temporal variabilities in the total net effluxes of Mn, Co, Ni and Zn were also observed and were attributed to the biological activities of the bivalves. Overall, the present study demonstrated that the response of different metals to the same bioturbation behavior was different, resulting in distinct mobility and fate of the metal contaminants.
Show more [+] Less [-]Short-term geochemical investigation and assessment of dissolved elements from simulated ash reclaimed soil into groundwater Full text
2019
Wang, Jiao
A soil column migration trough was used to study the leaching behavior and geochemical partitioning of fifteen elements Al, As, Cr, Cu, Fe, Mg, Sn, Sb, Zn, V, Co, Mn, Pb, Ni and Cd in simulated ash reclaimed soil. According to the results of cluster analysis for the sampling stations, there were three clusters: Cluster 1 of 7 wells with relative good groundwater quality originated from the background control area, Cluster 2 of 9 wells with worst groundwater quality in the downstream parts of the simulated ash reclaimed soil, and Cluster 3 of 2 wells with representative of samples influenced by the combined effect of injection of leaching solution and the main current. Statistical analysis identified five factor types that accounted for 83.055% of the total variance, which declined in the order: ash-soil rate > leaching intensity > water depths > flow velocity > leaching time. As, Sb, Cd, Pb and Ni were the dominant contaminants. The water around ash reclaimed soil was unsuitable for drinking. As, Mn, Cd, Sb, Co and V were the largest contributors to health risks. Soils reclaimed with fly ash can consequently be a long-time source for the transfer of toxic elements into groundwater.
Show more [+] Less [-]