Refine search
Results 1-10 of 47
Erosion effects of air pollution on needle surfaces.
1986
Karhu M. | Huttunen S.
Macro and trace elements in the black pine needles as inorganic indicators of urban traffic emissions Full text
2021
Zsigmond, Andreea Rebeka | Száraz, Alpár | Urák, István
Urban activities intensify air pollution by increasing the amount of particulate matter (PM). The trees collect PM by adsorption on the leaf surface and simultaneously absorb inorganic components. In this research, we investigated the potential of the black pine as bioindicator of road traffic emissions in Cluj-Napoca (Romania). We defined three sites types with different exposure to the road traffic (streets, outskirts, parks) and a control site far from the city. We quantified 17 inorganic components (Al, B, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, Zn) by MP-AES (microwave-plasma atomic emission spectroscopy) technique in the one-year-old needles and we identified the best candidates for biomonitoring purposes. The concentration of Ba, Cr, Cu and Fe showed the most sensitive variations with the road traffic intensity. While in the streets the Ba, Cu and Fe increased by 2.8–3.5 times in relation to the control site, the Cr varied in the highest degree exhibiting ratios of 2.2 (parks), 3.3 (outskirts) and 6.3 (streets). The success of these elements lies in several characteristics: they are closely related to non-exhaust emissions, they are readily absorbed through the leaves rather than the roots, and they tend to accumulate in the needles instead of being relocated to other organs. The street maintenance activities caused considerable accumulation of Na in the trees from the roadsides, but had no impact over the trees from the parks. The elements originating mainly in the re-suspended urban dust (Ni, Pb, Sr) equally affected the pines from the streets and parks.
Show more [+] Less [-]Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau Full text
2019
Li, Quanlian | Wang, Ninglian | Barbante, Carlo | Kang, Shichang | Callegaro, Alice | Battistel, Dario | Argiriadis, Elena | Wan, Xin | Yao, Ping | Pu, Tao | Wu, Xiaobo | Han, Yu | Huai, Yanping
Cryoconite is a dark, dusty aggregate of mineral particles, organic matter, and microorganisms transported by wind and deposited on glacier surfaces. It can accelerate glacier melting and alter glacier mass balances by reducing the surface albedo of glaciers. Biomass burning in the Tibetan Plateau, especially in the glacier cryoconites, is poorly understood. Retene, levoglucosan, mannosan and galactosan can be generated by the local fires or transported from the biomass burning regions over long distances. In the present study, we analyzed these four molecular markers in cryoconites of seven glaciers from the northern to southern Tibetan Plateau. The highest levels of levoglucosan and retene were found in cryoconites of the Yulong Snow Mountain and Tienshan glaciers with 171.4 ± 159.4 ng g⁻¹ and 47.0 ± 10.5 ng g⁻¹ dry weight (d.w.), respectively. The Muztag glacier in the central Tibetan Plateau contained the lowest levels of levoglucosan and retene with mean values of 59.8 ng g⁻¹ and 0.4 ± 0.1 ng g⁻¹ d.w., respectively. In addition, the vegetation changes and the ratios of levoglucosan to mannosan and retene indicate that combustion of conifers significantly contributes to biomass burning of the cryoconites in the Yulong Snow Mountain and Tienshan glacier. Conversely, biomass burning tracers in cryoconites of Dongkemadi, Yuzhufeng, Muztag, Qiyi and Laohugou glaciers are derived from the combustion of different types of biomass including softwood, hardwood and grass.
Show more [+] Less [-]Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation Full text
2009
Then, Ch | Herbinger, K. | Luis, V.C. | Heerdt, C. | Matyssek, R. | Wieser, G.
High O3 levels, driving uptake and challenging defense, prevail on the Canary Islands, being associated with the hot and dry summers of the Mediterranean-type climate. Pinus canariensis is an endemic conifer species that forms forests across these islands. We investigated the effects of ozone on photosynthesis and biochemical parameters of P. canariensis seedlings exposed to free-air O3 fumigation at Kranzberg Forest, Germany, where ambient O3 levels were similar to those at forest sites in the Canary Islands. The twice-ambient O3 regime (2xO3) neither caused visible injury-like chlorotic or necrotic spots in the needles nor significantly affected violaxanthin, antheraxanthin and zeaxanthin levels and the de-epoxidation state of the xanthophyll cycle. In parallel, stomatal conductance for water vapour, net photosynthesis, intercellular CO2 concentration, chlorophyll fluorescence parameters, as well as antioxidant levels were hardly affected. It is concluded that presently prevailing O3 levels do not impose severe stress on P. canariensis seedlings.
Show more [+] Less [-]Impact of reduced ozone concentration on the mountain forests of Mt. Tateyama, Japan Full text
2020
Kume, Atsushi | Fujimoto, Mao | Mizoue, Nobuya | Honoki, Hideharu | Nakajima, Haruki | Ishida, Megumi
The central mountainous area of Japan is affected by air pollutant emissions from nearby countries such as China and Korea. Sharp increases in the consumption of fossil fuels in the early 21st century, associated with rapid industrialization in China, resulted in long-range transport of pollutants from East Asia and increases in the harmful effects of pollution. However, the air pollutants emissions have decreased since 2006, when air pollution countermeasures were implemented in China. Furthermore, climatic patterns during 2008–2013 reduced tropospheric ozone concentrations around Japan. Such major changes in the social and climatic environment may have had a significant impact on forests. To investigate this, long-term forest monitoring data obtained at Buna-daira (1190 m a.s.l.), Buna-zaka (1090 m a.s.l.) and Arimine (1350 m a.s.l.) were analyzed. Buna-daira and Buna-zaka forests face the continental side of Mt. Tateyama in Toyama Prefecture. In both stands, the girth growth rate of Fagus crenata was found to have increased after 2008; however, such a tendency was not detected at Arimine, which is surrounded by mountains. The growth rates of Cryptomeria japonica, a conifer resistant to air pollution, were found to remain unchanged or decrease. Here, regional long-range transport of air pollution (including ozone and sulfur oxide) has been demonstrated to influence mountain forests in Japan. In particular, recent decreases in regional air pollution may be an important factor controlling increases in F. crenata, likely through changes in interspecific relationships between species sensitive to and tolerant of air pollution.
Show more [+] Less [-]Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning Full text
2018
Pallozzi, Emanuele | Lusini, Ilaria | Cherubini, Lucia | Hajiaghayeva, Ramilla A. | Ciccioli, Paolo | Calfapietra, Carlo
In the Mediterranean ecosystem, wildfires are very frequent and the predicted future with a probable increase of fires could drastically modify the vegetation scenarios. Vegetation fires are an important source of gases and primary emissions of fine carbonaceous particles in the atmosphere. In this paper, we present gaseous and particulate emissions data from the combustion of different plant tissues (needles/leaves, branches and needle/leaf litter), obtained from one conifer (Pinus halepensis) and one deciduous broadleaf tree (Quercus pubescens). Both species are commonly found throughout the Mediterranean area, often subject to wildfires. Experiments were carried out in a combustion chamber continuously sampling emissions throughout the different phases of a fire (pre-ignition, flaming and smoldering). We identified and quantified 83 volatile organic compounds including important carcinogens that can affect human health. CO and CO₂ were the main gaseous species emitted, benzene and toluene were the dominant aromatic hydrocarbons, methyl-vinyl-ketone and methyl-ethyl-ketone were the most abundant measured oxygenated volatile organic compounds. CO₂ and methane emissions peaked during the flaming phase, while the peak of CO emissions occurred during the smoldering phase. Overall, needle/leaf combustion released a greater amount of volatile organic compounds into the atmosphere than the combustion of branches and litter. There were few differences between emissions from the combustion of the two tree species, except for some compounds. The combustion of P. halepensis released a great amount of monoterpenes as α-pinene, β-pinene, p-cymene, sabinene, 3-carene, terpinolene and camphene that are not emitted from the combustion of Q. pubescens. The combustion of branches showed the longest duration of flaming and peak of temperature. Data presented appear crucial for modeling with the intent of understanding the loss of C during different phases of fire and how different typologies of biomass can affect wildfires and their speciation emissions profile.
Show more [+] Less [-]Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees Full text
2018
Anna, Klamerus-Iwan | Emanuel, Gloor | Anna, Sadowska-Rociek | Błońska, Ewa | Lasota, Jarosław | Łagan, Sylwia
Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees Full text
2018
Anna, Klamerus-Iwan | Emanuel, Gloor | Anna, Sadowska-Rociek | Błońska, Ewa | Lasota, Jarosław | Łagan, Sylwia
The canopy water storage capacity (S) is an important parameter for the hydrological cycle in forests. One factor which influences the S is leaf texture, which in turn is thought to be affected by the contents of polycyclic aromatic hydrocarbons (PAHs). In order to improve our understanding of S we simulated rainfall and measured the S of coniferous species growing under various conditions. The contents of 18 PAHs were measured in the needles. The species chosen were: Scots pine (Pinus sylvestris L), Norway spruce (Picea abies (L.) H. Karst) and silver fir (Abies Alba Mill.). Sample branches were collected in 3 locations: A - forest; B - housing estate; C - city center. We found that PAHs have a significant impact on the S of tree crowns. The increase in the total content of all of polycyclic aromatic hydrocarbons (SUM.PAH) translates into an increase of S for all species. The S is the highest for the P. abies species, followed by P. sylvestris and A. alba at all locations. Within the same species, an increase in the value of S is associated with an increase in the PAH content in needles measured by gas chromatography. For A.alba, the average S increased from 11.54% of the total amount of simulated rain (ml g⁻¹) at location A, to 17.10% at location B, and 21.02% at location C. Similarly for P. abies the S was 21.78%, 29.06% and 34.36% at locations A, B and C respectively.The study extends the knowledge of the mechanisms of plant surface adhesion and the anthropogenic factors that may modify this process as well as foliage properties.
Show more [+] Less [-]Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees Full text
Anna Klamerus-Iwan | Gloor Emanuel | Anna Sadowska-Rociek | Ewa Błońska | Jarosław Lasota | Sylwia Łagan
The canopy water storage capacity (S) is an important parameter for the hydrological cycle in forests. One factor which influences the S is leaf texture, which in turn is thought to be affected by the contents of polycyclic aromatic hydrocarbons (PAHs). In order to improve our understanding of S we simulated rainfall and measured the S of coniferous species growing under various conditions. The contents of 18 PAHs were measured in the needles. The species chosen were: Scots pine (Pinus sylvestris L), Norway spruce (Picea abies (L.) H. Karst) and silver fir (Abies Alba Mill.). Sample branches were collected in 3 locations: A - forest; B - housing estate; C - city center. We found that PAHs have a significant impact on the S of tree crowns. The increase in the total content of all of polycyclic aromatic hydrocarbons (SUM.PAH) translates into an increase of S for all species. The S is the highest for the P. abies species, followed by P. sylvestris and A. alba at all locations. Within the same species, an increase in the value of S is associated with an increase in the PAH content in needles measured by gas chromatography. For A.alba, the average S increased from 11.54% of the total amount of simulated rain (ml g−1) at location A, to 17.10% at location B, and 21.02% at location C. Similarly for P. abies the S was 21.78%, 29.06% and 34.36% at locations A, B and C respectively. | Rain simulation, Canopy water storage capacity, Ecohydrology, Air pollution, P. sylvestris, P. abies, A. alba | 40 | 1176-1184
Show more [+] Less [-]Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes Full text
2016
Eagles-Smith, Collin A. | Herring, Garth | Johnson, Branden | Graw, Rick
Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.
Show more [+] Less [-]Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000–2008 period Full text
2011
Sicard, Pierre | Dalstein-Richier, Laurence | Vas, Nicolas
In the South-Eastern French Mediterranean region, high ozone concentrations were measured since many years and specific symptoms like chlorotic mottles were detected on Arolla pines. We presented results for the 2000–2008 period concerning the trend analysis for ambient ozone concentrations and related forest damages, with the Mann and seasonal Kendall tests. Ozone precursor’s emissions from Europe have been reduced over the last 20 years. Decreases in annual averages, median, 25th and 98th percentiles and maxima values were found. The seasonal trend analysis for the high-lying stations showed a decreasing trend for the warm season, when main ozone production is the photochemistry, and an increase for the cold period, caused by a reduced ozone titration. Statistics on Arolla Pine reveal strong correlations between mottling intensity and the high ozone concentrations. Finally, decreases for the ozone concentrations, and associated statistics, AOT40 values and for the mottling intensity on conifers needles were observed.
Show more [+] Less [-]Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests Full text
2018
Oulehle, Filip | Tahovská, Karolina | Chuman, Tomáš | Evans, C. D. (Chris D.) | Hruška, Jakub | Růžek, Michal | Bárta, Jiří
Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global “hot spots” of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.
Show more [+] Less [-]