Refine search
Results 1-10 of 11
Impact of vineyard cover cropping on carbon dioxide and nitrous oxide emissions in Portugal
2017
Marques, Francisco J.M. | Pedroso, Vanda | Trindade, Henrique | Pereira, José L.S.
Scarce studies have been published reporting field measurements of nitrous oxide (N2O) emissions from vineyards, particularly for European conditions. The aim this study was to assess the effect of conventional tillage and no-tillage cover crops on direct N2O emission factor from vineyards (Vitis vinifera L.) in Portugal. A two-year field study was carried out in central Portugal (Nelas, Portugal). The experiment was established in a mature non-irrigated vineyard. The following four treatments with three replications were considered: soil tillage of the inter-row (Till), treatment Till followed by application of mineral fertiliser (50 kg N ha−1) (Till + N), permanent resident vegetation in the inter-row (NoTill), and treatment No-Till followed by application of mineral fertiliser (50 kg N ha−1) (NoTill + N). The carbon dioxide (CO2) and N2O fluxes were measured by the closed chamber technique and analysed by gas chromatography during two consecutive growing seasons (Mars-September of 2015 and 2016) of the grapevine crop. The results showed that the average direct N2O EF for vineyards managed with conventional soil tillage in the inter-row was 0.57 ± 0.12% of N input and cover cropping by permanent resident vegetation in the inter-row reduces N2O emission in 60% (0.23 ± 0.29% of N input). Thus, the vineyard cover cropping was recommended as mitigation measure in order to reduce N2O emissions. The defaults direct N2O EF currently recommended by IPCC was not appropriated for vineyards and N2O emissions are currently potentially overestimated in the Portuguese inventory.
Show more [+] Less [-]Neonicotinoid contamination in wildflowers collected from citrus orchards in a northwestern Mediterranean Region (Spain) after tree foliar treatments
2022
García-Valcárcel, Ana Isabel | Campos-Rivela, José Miguel | Hernando Guil, María Dolores | Martínez-Ferrer, María Teresa
Ground-cover vegetation attracts and harbors beneficial insects to the agrosystem, playing an important role in conservation biological control. Integrated pest management (IPM) program guidelines recommend the implantation of sowed or resident wild covers in perennial crops. Given the high-quality fruit requirements, even in IPM programs, insecticides can be required in citrus crops. This study presents, over a year, the levels of neonicotinoids (thiamethoxam and imidacloprid) in not-target ground-cover wildflowers growing spontaneously in citrus orchards after foliar treatment of citrus trees. The presence and persistence of these neonicotinoids in different wildflower species were studied. Concentrations of thiamethoxam and imidacloprid in whole wildflowers ranged from < method quantification limit (MQL) to 52.9 ng g⁻¹ and from < MQL to 98.6 ng g⁻¹, respectively. Thiamethoxam was more frequently detected than imidacloprid. Thiamethoxam and imidacloprid were detected up to 336 and 230 days after treatment, respectively. The highest detection frequencies (100%) and highest thiamethoxam and imidacloprid mean concentrations (26.0 ± 7.3 ng g⁻¹ and 11.0 ± 10.6 ng g⁻¹, respectively) occurred in wildflowers collected 9 days after the treatments. Since application, a clear decrease in the concentration of both compounds and differences in the accumulation depending on wildflower species were observed. Cross contamination was detected, indicating a transport from adjacent treated plots. Maintaining a cover crop in citrus orchards may lead to detrimental effects on non-target arthropods if these neonicotinoid compounds are used for pest control since they can entail a chronic exposure during at least 230 days for imidacloprid and 336 days for thiamethoxam.
Show more [+] Less [-]How Effective is Reduced Tillage–Cover Crop Management in Reducing N₂O Fluxes from Arable Crop Soils?
2012
Abdalla, M. | Rueangritsarakul, K. | Jones, M. | Osborne, B. | Helmy, M. | Roṭh, B. | Burke, J. | Nolan, P. | Smith, P. | Williams, M.
Field management is expected to influence nitrous oxide (N₂O) production from arable cropping systems through effects on soil physics and biology. Measurements of N₂O flux were carried out on a weekly basis from April 2008 to August 2009 for a spring sown barley crop at Oak Park Research Centre, Carlow, Ireland. The soil was a free draining sandy loam typical of the majority of cereal growing land in Ireland. The aims of this study were to investigate the suitability of combining reduced tillage and a mustard cover crop (RT–CC) to mitigate nitrous oxide emissions from arable soils and to validate the DeNitrification–DeComposition (DNDC) model version (v. 9.2) for estimating N₂O emissions. In addition, the model was used to simulate N₂O emissions for two sets of future climate scenarios (period 2021–2060). Field results showed that although the daily emissions were significantly higher for RT–CC on two occasions (p < 0.05), no significant effect (p > 0.05) on the cumulative N₂O flux, compared with the CT treatment, was found. DNDC was validated using N₂O data collected from this study in combination with previously collected data and shown to be suitable for estimating N₂O emissions (r ² = 0.70), water-filled pore space (WFPS) (r ² = 0.58) and soil temperature (r ² = 0.87) from this field. The relative deviations of the simulated to the measured N₂O values with the 140 kg N ha⁻¹ fertiliser application rate were −36 % for RT–CC and −19 % for CT. Root mean square error values were 0.014 and 0.007 kg N₂O–N ha⁻¹ day⁻¹, respectively, indicating a reasonable fit. Future cumulative N₂O fluxes and total denitrification were predicted to increase under the RT–CC management for all future climate projections, whilst predictions were inconsistent under the CT. Our study suggests that the use of RT–CC as an alternative farm management system for spring barley, if the sole objective is to reduce N₂O emissions, may not be successful.
Show more [+] Less [-]Vicia villosa Roth: a cover crop to phytoremediate arsenic polluted environments
2021
Ibañez, Sabrina G. | Travaglia, Claudia N. | Medina, María I. | Agostini, Elizabeth
Vicia villosa Roth is a legume species with a growing application in Argentina as a cover crop (CC), a practice that favors the sustainable development of agricultural systems. However, several areas where the use of this CC provides numerous advantages are affected by high concentrations of arsenic (As). Thus, in the present work we studied hairy vetch ability to cope with arsenate [As(V)], arsenite [As(III)], and the mixture of both along with oxidative stress indexes [chlorophyll content, malondialdehyde (MDA) equivalents] as well as anatomical and histological changes in the root structure. The results obtained suggested a different behavior of hairy vetch depending on its growth stage and on metal(oid) concentration. The roots treated with the contaminant showed less turgidity, thickening of the epidermal and subepidermal parenchymal outer layers, and the presence of dark deposits. The morpho-anatomic parameters (cortex length, vascular cylinder diameter, total diameter, and vascular cylinder area) were altered in plants treated with As(V) and As(V)/As(III) whereas the roots of plants treated with As(III) did not show significant differences respect to the control. Moreover V. villosa could tolerate and remove As from soil, thus the use of this legume species seems an attractive approach to remediate As while protecting contaminated soils.
Show more [+] Less [-]Black Oat (Avena strigosa Schreb.) Growth and Root Anatomical Changes in Sandy Soil with Different Copper and Phosphorus Concentrations
2016
Guimarães, Paula Rocha | Ambrosini, Vítor Gabriel | Miotto, Alcione | Ceretta, Carlos Alberto | Simão, Daniela Guimarães | Brunetto, Gustavo
Successive applications of copper-based (Cu) fungicides have increased Cu concentration in vineyard soils, inducing Cu toxicity in young vines and cover crops such as black oat, thus inhibiting growth and development. However, increasing soil phosphorus (P) content can reduce Cu toxicity symptoms. In this context, the aim of this study was to evaluate the effect of Cu toxicity and its alleviation by P fertilization in black oat cultivated in sandy soil. For the experiment, Typic Hapludalf soil samples were air-dried, prepared, and subjected to increasing doses of Cu (0, 30, and 60 mg kg⁻¹) and P (0 and 100 mg kg⁻¹). Subsequently, the soil was incubated and stored in pots, where black oat seedlings were grown for 30 days in a greenhouse. Plant roots subjected to Cu, especially with the highest Cu concentration and without P addition decreased the root cap size, showing early tissue differentiation and lateral root formation near the apical region. Decrease in dry matter (DM) production of roots (50 %) and shoots (67 %) was also observed in the highest Cu concentration. Plants without P addition, regardless of Cu concentration, also had lower root (33 %) and shoot (65 %) DM production. P addition in soil and its increased concentration reduced root anatomical changes and stimulated plant DM production. Therefore, we conclude that excessive Cu concentration alters black oat root anatomical structure, affecting plant growth, especially in sandy soils with low organic matter content. However, P supply can reduce root Cu toxicity symptoms, thus increasing plant dry matter production.
Show more [+] Less [-]Winter Rye Cover Crop Impacts on Runoff Water Quality in a Northern New York (USA) Tile-Drained Maize Agroecosystem
2020
Griffith, Keegan E. | Young, Eric O. | Klaiber, Laura B. | Kramer, Stephen R.
Nonpoint source phosphorus (P) and nitrogen (N) pollution from agriculture is a global concern. Planting a cover crop after harvesting annual crops such as maize may help mitigate nutrient transport risk to surface and groundwater. Few studies have focused on the impact of a winter rye cover crop on both surface runoff (SR) and tile drainage (TD) water quality. Here, we measured N and P losses in SR and TD from maize plots grown with and without a winter rye cover crop. Four plots (46 × 23 m) in northern New York, USA, equipped with automated SR and TD flow monitoring were planted with winter rye (Secale cereal) in 2016 and 2017 after maize silage harvest. Plots were managed as typical silage fields for dairy farms in the region and received fertilizer and manure applications. Dissolved reactive P (DRP), total P (TP), nitrate-N, total N (TN), and total suspended solids (TSS) loads were monitored from 4/7/16 to 6/29/17. Cumulative SR (volumetric depth equivalent) was 1.8-fold lower for rye compared to control plots. Although runoff and loading were variable, cumulative TSS, TP, and DRP losses were approximately 3-fold lower for rye plots compared to control. Cumulative TN and nitrate-N loads for TD were similar; however, cumulative TN loss for SR was lower for rye plots. Surface runoff was the main pathway of P loss (> 90% of DRP and TP loss) with > 90% of cumulative P exported from 2017 snowmelt events. Results suggest winter rye mitigated N and P transport risk in SR compared to the common practice of leaving maize silage fields bare after harvest.
Show more [+] Less [-]N2O, CO2, Production, and C Sequestration in Vineyards: a Review
2018
Nistor, Eleonora | Dobrei, Alina Georgeta | Dobrei, Alin | Camen, Dorin | Sala, Florin | Prundeanu, Horia
Even if it is less polluting than other farm sectors, grape growing management has to adopt measures to mitigate greenhouse gas (GHG) emissions and to preserve the quality of grapevine by-products. In viticulture, by land and crop management, GHG emissions can be reduced through adjusting methods of tillage, fertilizing, harvesting, irrigation, vineyard maintenance, electricity, natural gas, and transport until wine marketing, etc. Besides CO₂, nitrous oxide (N₂O) and methane (CH₄), released from fertilizers and waste/wastewater management are produced in vineyards. As the main GHG in vineyards, N₂O can have the same harmful action like large quantities of CO₂. Carbon can be found in grape leaves, shoots, and even in fruit pulp, roots, canes, trunk, or soil organic matter. C sequestration in soil by using less tillage and tractor passing is one of the efficient methods to reduce GHG in vineyards, with the inconvenience that many years are needed for detectable changes. In the last decades, among other methods, cover crops have been used as one of the most efficient way to reduce GHG emissions and increase fertility in vineyards. Even if we analyze many references, there are still limited information on practical methods in reducing emissions of greenhouse gases in viticulture. The aim of the paper is to review the main GHG emissions produced in vineyards and the approached methods for their reduction, in order to maintain the quality of grapes and other by-products.
Show more [+] Less [-]Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard
2018
Gómez, JoséAlfonso | Campos, Mercedes | Guzmán, Gema | Castillo-Llanque, Franco | Vanwalleghem, Tom | Lora, Ángel | Giráldez, JuanV.
A 3-year experiment compared in an olive orchard the effect of different cover crops’ composition on runoff, water erosion, diversity of annual plants, and arthropod communities which could provide an alternative to conventional management based on tillage (CT). The cover crops evaluated were a seeded homogeneous grass (GC), a seeded mix of ten different species (MCₛₑₑdₑd), and a non-seeded cover by vegetation naturally present at the farm after 20 years of mowing (MCₙₐₜᵤᵣₐₗ). The results suggest that heterogeneous cover crops can provide a viable alternative to homogeneous ones in olives, providing similar benefits in reducing runoff and soil losses compared to management based on bare soil. The reduction in soil loss was particularly large: 46.7 in CT to 6.5 and 7.9 t ha⁻¹ year⁻¹ in GC and MCₛₑₑdₑd, respectively. The heterogeneous cover crops resulted in greater diversity of plant species and a modification of the arthropod communities with an increased number of predators for pests. The reduction of the cost of implanting heterogeneous cover crops, improvement of the seeding techniques, and selection of species included in the mixes require additional research to promote the use of this practice which can deliver enhanced environmental benefits.
Show more [+] Less [-]Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia
2016
Zhou, Xiaoqi | Wu, Hanwen | Li, Guangdi | Chen, Chengrong
Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187–253 kg ha⁻¹ and the mean soil total N by 16.3–19.1 kg ha⁻¹ relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5–20.9 kg ha⁻¹ and the mean soil microbial biomass N by 4.5–10.2 kg ha⁻¹. We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6–13.9 %, whereas non-legume crops accounted for 16.4–18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.
Show more [+] Less [-]Mitigating nitrogen pollution with under‐sown legume–grass cover crop mixtures in winter cereals
2021
Morris, Andrew H. | Isbell, Sarah A. | Saha, Debasish | Kaye, Jason P.
Nitrogen (N) pollution from N inputs to agricultural soils contributes to widespread eutrophication and global climate change. One period susceptible to N losses is between winter grain harvest in summer and corn planting in spring in a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.]–winter grain rotation. Cover crops used to immobilize N during this period often depend on tillage, which can exacerbate N losses. Therefore, we evaluated whether reduced‐till cover crops could decrease nitrate (NO₃–) leaching and nitrous oxide (N₂O) emissions during this period. We tested this strategy in a cropping systems experiment on a 4‐ha plot in central Pennsylvania over 2 yr. This experiment compared a clover (Trifolium pratense L.)–timothy (Phleum pratense L.) cover crop no‐till underseeded into a standing spelt crop with a vetch (Vicia villosa Roth)–triticale (× Triticosecale Wittm. ex A. Camus) cover crop established with tillage after spelt harvest. These systems were compared based on fortnightly N₂O emissions using static chambers (n = 4 per six sample dates) and potential NO₃– leaching using anion resin bags (n = 4 per system per year). Reduced‐till cover crops minimized peak N₂O emissions during the fall compared with tilled cover crops. However, reduced‐till cover crops did not decrease potentially leachable NO₃– relative to tilled cover crops despite decreases in soil inorganic N. Cover crop N isotopes revealed that clover N may have mineralized and leached over the winter. Our results suggest that reduced‐till cover crops can decrease N₂O emissions to mitigate the climate impact of agriculture but that winter‐hardy cover crops should be chosen to mitigate leaching.
Show more [+] Less [-]