Refine search
Results 1-10 of 147
Global climatic changes: modelling the potential responses of agro-ecosystems with special reference to crop protection.
1995
Goudriaan J. | Zadoks J.C.
Anthocyanin-mediated arsenic tolerance in plants
2022
Ahammed, Golam Jalal | Yang, Youxin
Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.
Show more [+] Less [-]Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
Show more [+] Less [-]Carbon nanomaterials for the detection of pesticide residues in food: A review
2022
Mishra, Smriti | Mishra, Shivangi | Patel, Shiv Singh | Singh, Sheelendra Pratap | Kumar, Pradip | Khan, Mohd Akram | Awasthi, Himani | Singh, Shiv
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Show more [+] Less [-]Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review
2021
Khan, Imran | Awan, Samrah Afzal | Rizwan, Muhammad | Ali, Shafaqat | Zhang, Xinquan | Huang, Linkai
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
Show more [+] Less [-]Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season
2020
Mishra, A.K. | Sinha, V.
Isoprene, formaldehyde and acetaldehyde are important reactive organic compounds which strongly impact atmospheric oxidation processes and formation of tropospheric ozone. Monsoon meteorology and the topography of Himalayan foothills cause surface emissions to get rapidly transported both horizontally and vertically, thereby influencing atmospheric processes in distant regions. Further in monsoon, Indo-Gangetic Plain is a major rice growing region of the world and daytime hourly ozone can frequently exceed phytotoxic dose of 40 ppb O₃. However, the sources and ambient variability of these compounds which are potent ozone precursors are unknown. Here, we investigate the sources and photochemical processes driving their emission/formation during monsoon season from a sub-urban site at the foothills of the Himalayas. The measurements were performed in July, August and September using a high sensitivity mass spectrometer. Average ambient mixing ratios (±1σ variability) of isoprene, formaldehyde, acetaldehyde, and the sum of methyl vinyl ketone and methacrolein (MVK+MACR), were 1.4 ± 0.3 ppb, 5.7 ± 0.9 ppb, 4.5 ± 2.0 ppb, 0.75 ± 0.3 ppb, respectively, and much higher than summertime values in May. For isoprene these values were comparable to mixing ratios observed over tropical forests. Surprisingly, despite occurrence of anthropogenic emissions, biogenic emissions were found to be the major source of isoprene with peak daytime isoprene driven by temperature (r ≥ 0.8) and solar radiation. Photo-oxidation of precursor hydrocarbons were the main sources of acetaldehyde, formaldehyde and MVK+MACR. Ambient mixing ratios of all the compounds correlated poorly with acetonitrile (r ≤ 0.2), a chemical tracer for biomass burning suggesting negligible influence of biomass burning during monsoon season. Our results suggest that during monsoon season when radiation and rain are no longer limiting factors and convective activity causes surface emissions to be transported to upper atmosphere, biogenic emissions can significantly impact the remote upper atmosphere, climate and ozone affecting rice yields.
Show more [+] Less [-]Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains
2019
Shi, Mei | Sun, Yingying | Wang, Zhaohui | He, Gang | Quan, Hanxiang | He, Hongxia
Plastic film mulching is a common practice to increase crop yield in dryland, while the wide use of plastic film has resulted in ubiquitous phthalate esters (PAEs) releasing into the soil. PAEs in soil could be taken up and accumulated by dietary intake of food crops such as wheat, thus imposing health risks to residents. In the present study, samples from a long-term location-fixed field experiment were examined to clarify the accumulation of PAEs in soil and wheat, and to assess the human health risks from PAEs via dietary intake of wheat grain under plastic film mulching cultivation in dryland. Results showed that concentrations of PAEs in grains from mulching plots ranged from 4.1 to 12.6 mg kg−1, which were significantly higher than those in the control group. There was a positive correlation for the PAE concentrations between wheat grains and field soils. Concentrations of PAEs in the soil were in the range of 1.8–3.5 mg kg−1 for the mulching treatment, and 0.9–2.7 mg kg−1 for the control group. Di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were detected in all soil and grain samples, and DEHP was found to be the dominant PAE compound in grains. Based on DEHP concentrations in wheat grains, the values of carcinogenic risk for adults were higher than the recommended value 10−4. Results indicated that wheat grains from film mulching plots posed a considerable non-carcinogenic risk to residents, with children being the most sensitive resident group. Findings of this work call the attention to the potential pollution of grain crops growing in the plastic film mulching crop production systems.
Show more [+] Less [-]Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil
2017
Oleszczuk, Patryk | Godlewska, Paulina | Reible, Danny D. | Kraska, Piotr
The aim of the present study was to determine the effect of activated carbon (AC) or biochars on the bioaccessibility (Cbioacc) of polycyclic aromatic hydrocarbons (PAHs) in soils vegetated with willow (Salix viminalis). The study determined the effect of willow on the Cbioacc PAHs and the effect of the investigated amendments on changes in dissolved organic carbon (DOC), crop yield and the content of PAHs in plants. PAH-contaminated soil was amended with 2.5 wt% AC or biochar. Samples from individual plots with and without plants were collected at the beginning of the experiment and after 3, 6, 12 and 18 months. The Cbioacc PAHs were determined using sorptive bioaccessibility extraction (SBE) (silicon rods and hydroxypropyl-β-cyclodextrin). Both AC and biochar caused a decrease in the Cbioacc PAHs. Immediately after adding AC, straw-derived biochar or willow-derived biochar to the soil, the reduction in the sum of 16 (Σ16) Cbioacc PAHs was 70.3, 38.0, and 29.3%, respectively. The highest reduction of Cbioacc was observed for 5- and 6-ring PAHs (from 54.4 to 100%), whereas 2-ring PAHs were reduced only 8.0–25.4%. The reduction of Cbioacc PAHs increased over time. Plants reduced Cbioacc in all soils although effects varied by soil treatment and PAH. Willow grown in AC- and biochar-amended soil accumulated less phenanthrene than in the control soil. The presence of AC in the soil also affected willow yield and shoot length and DOC was reduced from 53.5 to 66.9% relative to unamended soils. In the biochars-amended soil, no changes in soil DOC content were noted nor effects on willow shoot length.
Show more [+] Less [-]Evaluation of cytotoxic and genotoxic activity of fungicide formulation Tango® Super in bovine lymphocytes
2017
Schwarzbacherová, Viera | Wnuk, Maciej | Lewinska, Anna | Potocki, Leszek | Żebrowski, Jacek | Koziorowski, Marek | Holečková, Beáta | Šiviková, Katarína | Dianovský, Ján
Tango® Super is a two-compound fungicide formulation widely employed in grain protection. However, details of Tango® Super effects on cell cultures have not been fully investigated. In this study, bovine lymphocytes were exposed to a concentration range 0.5; 1.5; 3; 6; and 15 μg mL⁻¹ for 4 h to assess the cytotoxicity and genotoxicity of the fungicide. Our experiments revealed that this fungicide treatment reduced cell viability, decreased cell proliferation and provoked apoptotic cell death. Cell cycle analysis showed predominant accumulation of cells in the G0/G1 phase of the cell cycle. The fungicide was able to induce mitochondrial superoxide production accompanied by elevated levels of carbonylated proteins and changes in the lipid membrane composition. The fungicide did not induce micronuclei production, but stimulated both DNA double-strand breaks and the formation of p53 binding protein, which is accumulated during the DNA repair process at the site of double-strand breaks. Based on the obtained data we suppose that the fungicide-induced DNA damage is the result of oxidative stress, which may contribute to higher occurrence of apoptotic cell death. Because ergosterol biosynthesis-inhibiting fungicides are widely used in agriculture to ensure higher crop yields and may cause health impairment of animals and humans, there is a need for further testing to elucidate their potential genotoxic effects using in vivo and/or in vitro systems.
Show more [+] Less [-]Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants
2017
Sun, Lijuan | Yang, Jianjun | Fang, Huaxiang | Xu, Chen | Peng, Cheng | Huang, Haomin | Lu, Lingli | Duan, Dechao | Zhang, Xiangzhi | Shi, Jiyan
Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S0, Na2SO4) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain.
Show more [+] Less [-]