Refine search
Results 1-2 of 2
Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
Show more [+] Less [-]Sublethal effects of anthranilic diamide insecticides on the demographic fitness and consumption rates of the Coccinella septempunctata (Coleoptera: Coccinellidae) fed on Aphis craccivora
2020
Jiang, Jiangong | Wang, Yao | Mu, Wei | Zhang, Zhengqun
As for developing effective integrated pest management (IPM), it is necessary to understand the sublethal effects of common insecticides on the non-target beneficial arthropods. In this lab-scale study, the sublethal effects of two anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole on the populations of 7-spot ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) were determined and compared using an age-stage, TWO-SEX life table and CONSUME-MSChart computer program. Cyantraniliprole at low-lethal concentrations of 1 and 10 mg L⁻¹ significantly prolonged the larval stages and reduced the total adult longevity, compared with the control. Additionally, the net reproductive rate (R₀), intrinsic rate of increase (r), finite rate of increase (λ), and mean generation time (T) were significantly reduced in the group treated with 10 mg L⁻¹ of cyantraniliprole. Similarly, the net predation (C₀), the finite predation rate (ω), and stable predation rate (ψ) were significantly reduced by cyantraniliprole at 1 and 10 mg L⁻¹. In contrast, no significant difference in the demographic parameters above was determined for chlorantraniliprole at 1 mg L⁻¹. Therefore, C. septempunctata population may develop faster and possess greater predation potential against aphids under the exposure of chlorantraniliprole, compared to cyantraniliprole. Chlorantraniliprole may be a preference to cyantraniliprole as a combined alternative with ladybeetle predators in IPM framework.
Show more [+] Less [-]