Refine search
Results 1-10 of 92
The length and weight growth of carp (Cyprinus carpio L.) from artificial lake Slatino [The Former Yugoslav Republic of Macedonia]
2001
Talevski, T. (Hidrobioloski zavod, Ohrid (The Former Yugoslav Republic of Macedonia))
In this paper are presented the length and weight growth of carp (Cyprinus carpio L.) from artificial lake Slatino (The Former Yugoslav Republic of Macedonia). Artificial lake Slatino because some recontruction works was whole emplied in 1993. Than all fish population was leaved in the river Mramorechka. Artificial lake Slatino has been stocking with individuals of carp (Cyprinus carpio L.) catch from Lake Ohrid. They are used for reproduction and in first years were used for reparation of the fish fond in artificial lake.
Show more [+] Less [-]Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio)
2021
Jia, Rui | Du, Jinliang | Cao, Liping | Feng, Wenrong | He, Qin | Xu, Pao | Yin, Guojun
Hydrogen peroxide (H₂O₂), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H₂O₂ for gills and liver of fish has received attention from many researchers. However, whether H₂O₂ exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H₂O₂ toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H₂O₂ for 1 h per day lasting 14 days. The results showed that H₂O₂ exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD⁺) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). Meanwhile, H₂O₂ exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H₂O₂ exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H₂O₂ exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H₂O₂ exposure. In conclusion, our data indicated that H₂O₂ exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H₂O₂ toxicity in aquatic animal, and contributed to proper application of H₂O₂ in aquaculture.
Show more [+] Less [-]Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity
2020
Xiang, Qian-Qian | Wang, Di | Zhang, Ji-Lai | Ding, Cheng-Zhi | Luo, Xia | Tao, Juan | Ling, Jian | Shea, Damian | Chen, Li-Qiang
Although the toxicity of silver nanoparticles (AgNPs) in aquatic organisms has been extensively investigated, the mechanism by which AgNPs damage membranes remains unclear. This study investigated the toxic effects of a series of sub-lethal concentrations of AgNPs on the membranes of freshwater carp (Cyprinus carpio) gills, based on changes in membrane fatty acid (FA) profile, membrane fluidity, membrane lipid peroxidation, and histopathology. Most of the FAs in fish gill membrane was not significantly affected by exposure to multiple AgNPs concentrations, only few significant changes occurred in some specific FAs species at a high concentration of AgNPs exposure. In particular, high concentrations of AgNPs significantly decreased the proportions of two important long-chain n-3 series polyunsaturated FAs (C20: 5n3, and C22: 6n3), resulting in a decreased ratio of n-3 polyunsaturated FAs to n-6 polyunsaturated FAs (Σn-3UFA/Σn-6UFA). The AgNPs also caused a dose-dependent decrease in fish gill membrane fluidity, increased the level of lipid peroxidation, and inhibited Na+/K+-ATPase enzyme activity. Further histopathological examination revealed that exposure to AgNPs can cause toxic responses in the lamellae, including the thinning of the basement membrane, malformation, and inflammation. Together, the results suggest that the mechanism of AgNPs membrane toxicity involves the oxidization of long-chain omega-3 unsaturated FAs to saturated FAs via lipid peroxidation, resulting in, decreased membrane fluidity and ultimately the destruction of the normal physiological function of the fish gill membrane. The findings contribute significantly to our understanding of nanoparticle-induced membrane toxicity and potential risks in aquatic environments.
Show more [+] Less [-]Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.)
2020
Chang, Xulu | Wang, Xianfeng | Feng, Junchang | Su, Xi | Liang, Junping | Li, Hui | Zhang, Jianxin
Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-β was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.
Show more [+] Less [-]Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite
2009
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles. The co-existence of TiO2 nanoparticles could change the speciation of arsenite by adsorption and photo-oxidation, and enhance its bioaccumulation to carp.
Show more [+] Less [-]Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: Bioaccumulation, biotransformation and biological responses
2009
Ventura-Lima, Juliane | Fattorini, Daniele | Regoli, Francesco | Monserrat, José M.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism. Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.
Show more [+] Less [-]The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas
2021
Li, Zhuo | Ali Shah, Syed Waqas | Zhou, Qin | Yin, Xiujie | Teng, Xiaohua
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H₂O₂) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Show more [+] Less [-]Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp
2021
Liu, Jingbo | Dong, Chenyu | Zhai, Zhenzhen | Tang, Liang | Wang, Lin
Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.
Show more [+] Less [-]Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio
2020
Heavy metals (HMs) in an aquatic environment mainly affects fish, and thus, fish are convenient pollution bio-indicators. In this study, the toxic effects of HM mixture (chromium (Cr), cadmium (Cd), copper (Cu)) in 0 mg/L to 3.2 mg/L concentration range was investigated in Cyprinus carpio (28 days). HM accumulation, histopathology, oxidative stress, and gut microbial changes were evaluated. HMs accumulated in the order of Cr > Cu > Cd, primarily in the kidneys and finally scales. Reactive oxygen species generation increased in all exposure groups up to day 14, with maximum generation at 3.2 mg/L mixture, which later decreased on day 28 in all. Malondialdehydeand and superoxide dismutase levels increased from day 7 to 28 with increased HM concentrations, while total protein showed an inverse trend. Gill histopathology showed major changes such as uplifted and disintegrated primary lamella, and secondary lamella shortening. The kidneys were characterized by glomerular necrosis, Bowman’s capsule expansion, and tubular space dilatation. Proteobacteria and Firmicutes abundance increased up to 59.4% and 99.16% in 0.8 mg/L and 3.2 mg/L treatment groups, respectively. This study provided a better understanding on the physiology and gut microbiota alteration in C. carpio under multiple HM stress.
Show more [+] Less [-]Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp
2019
Ma, Junguo | Zhu, Jingyi | Wang, Wanying | Ruan, Panpan | Rajeshkumar, Sivakumar | Li, Xiaoyu
Glyphosate (GLY)-based herbicide, one of the most widely used herbicides, might cause a series of environmental problems and pose a toxicological risk to aquatic organisms. However, data on the potential hazard and toxicity mechanism of GLY to fish gills are relatively scarce. In this study, a subacute toxicity test of common carp (Cyprinus carpio L.) treated with commercial GLY at 52.08 and 104.15 mg L−1 for 7 d was conducted. The results revealed that GLY exposure significantly inhibited Na+/K+-ATPase and increased AST and ALT activities in the fish gills. The biochemical assays results revealed that GLY treatment remarkably altered the transcriptional levels of HSP70 and HSP90; inhibited the activities of SOD, CAT, GPx, GR, and T-AOC; reduced the contents of GSH, but remarkably promoted MDA and PC contents, suggesting that GLY exposure induced oxidative stress and lipids and proteins damage in the carp gills. Further research revealed that GLY exposure also promoted expression of NF-κB, iNOS, IL-1β, IL-6, IL-8, and TNF-α; altered the levels of IL-10 and TGF-β, indicating that GLY exposure induced inflammatory response in the fish gills. Additionally, we found that GLY exposure activated apaf-1 and bax and inhibited bcl-2, induced caspase-9 and caspase-3 expression and caused remarkable histological damage in the fish gills. These results may further enriches the toxicity mechanistic theory of GLY to fish gills, which may be useful for the risk assessment of GLY and aquatic organism protection.
Show more [+] Less [-]