Refine search
Results 1-10 of 28
TBBPA and its alternative TCBPA induced ROS-dependent mitochondria-mediated apoptosis in the liver of Rana nigromaculata
2022
Jia, Xiuying | Yan, Ruopeng | Lin, Huikang | Liu, Zhiquan | Shen, Lilai | Yang, Hongmei | Wu, Haoying | Shan, Xiaodong | Zhang, Hangjun
Tetrabromobisphenol A (TBBPA), which is the most widely employed brominated flame retardant, and its alternative tetrachlorobisphenol A (TCBPA) are widely distributed in aquatic environments. In the present study, the hepatotoxicity induced by TBBPA and TCBPA was investigated in Rana nigromaculata, and the potential mechanisms were investigated with a particular focus on ROS (reactive oxygen species) -dependent mitochondria-mediated apoptosis. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L waterborne TBBPA and TCBPA for 14 days. The results showed that liver weight was significantly increased by 51.52%–98.99% in the 0.01, 0.1, and 1 mg/L TBBPA and TCBPA groups relative to the control. Histological examination revealed that the structure of the liver, to some extent, was influenced by TBBPA and TCBPA with nuclear shrinkage and mitochondrial swelling. Meanwhile, TBBPA and TCBPA have significantly increased the alanine transaminase level in serum and the content of ROS, while inhibiting the activity of superoxide dismutase in the liver. In addition, DNA fragments were observed in the TBBPA and TCBPA groups relative to the control. Expression of Cytochrome C was significantly increased by 1.13-, 1.38-, 1.60-, and 2.46-fold in 0.001, 0.01, 0.1, and 1 mg/L TBBPA, and by 1.26-, 1.51-, 2.14-, and 2.98- fold in 0.001, 0.01, 0.1, and 1 mg/L TCBPA, respectively, which indicated that TCBPA may be more toxic than TBBPA. Similarly, the ratio of Bax/Bcl-2 was increased in a dose-dependent manner. These results indicated that apoptosis in the ROS-dependent mitochondrial pathway mediates hepatotoxicity caused by TBBPA and TCBPA. The present study will facilitate an understanding of the toxicity mechanism of flame retardants.
Show more [+] Less [-]Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2
2020
Tao, Huaping | Bao, Zhiwei | Jin, Cuiyuan | Miao, Wenyu | Fu, Zhengwei | Jin, Yuanxiang
Fungicides, usually refer to the chemical agents that can effectively control or kill the pathogenic microorganisms. Here, we revealed the effects of three different fungicides, imazalil (IMZ), chlorothalonil (CTL) and carbendazim (CBZ), which are typical broad-spectrum fungicides that are detected at high levels in the natural environment, on heterogeneous human epithelial colorectal cells (Caco-2 cells). All three fungicides had the potential to induce different degrees of toxicity, cause apoptosis, reactive oxygen species (ROS) and even change the cell cycle in the cells. The half maximal inhibitory concentration (IC50) of CTL is the lowest among these three fungicides, suggesting that it may have the highest exposure risk, followed by IMZ, and CBZ. The results of the real-time PCR, Western blotting, and mitochondrial membrane potential (MMP) assays and the activities of key enzymes suggested that CTL induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by the upregulation of the expression of the apoptotic p53 and bax genes, the increase of the apoptosis marker cytochrome-c, the decrease of mRNA level of bcl-2 gene, and the decrease in the MMP. Exposure to two other fungicides also upregulated the transcriptional level of bax and the expression of cytochrome-c, but the mRNA level of bcl-2 was increased (IMZ) or unchanged (CBZ), suggesting that other pathways may be involved in the induction of cellular apoptosis by these two fungicides. In addition, all three of the fungicides could induce oxidative stress in Caco-2 cells. Our data showed that the three different kinds of fungicides all caused toxic effects in Caco-2 cells through various pathways.
Show more [+] Less [-]Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway
2018
Shi, Jun | Zhang, Min | Zhang, Libin | Deng, Huipin
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
Show more [+] Less [-]Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays
2017
Zhang, Yang | Wu, Jigang | Xu, Wenping | Gao, Jufang | Cao, Haijing | Yang, Mingjun | Wang, Bo | Hao, Youwu | Tao, Liming
Avermectin (AVM) has been widely used in agriculture and animal husbandry based on its broad spectrum of effective anthelmintic activity and specificity targets. However, AVM induction of cytotoxicity in human liver is largely unknown. In this study, we investigate the cytotoxic effects of AVM on HepG2 cells in vitro. The results revealed that AVM inhibited the viability of HepG2 cells and enhanced apoptosis. Established assays of cytotoxicity were performed to characterize the mechanism of AVM toxicity on HepG2 cells. Typical apoptosis morphological changes were shown in AVM-treatment cells including chromatin condensation and DNA fragmentation. We demonstrated that AVM-induced apoptosis of HepG2 cells were mediated by generated ROS. Moreover, a decrease in mitochondrial membrane potential (MMP) and up-regulating the Bax/Bcl-2 ratio, resulted in a release of cytochrome-c as well as activation of caspase-9/-3. In conclusion, our experimental results show that AVM has a potential threat to human health which may be induce apoptosis of human hepatocyte cells via caspase-dependent mitochondrial pathways.
Show more [+] Less [-]Toxic effects of the Emamectin Benzoate exposure on cultured human bronchial epithelial (16HBE) cells
2020
Niu, Chenguang | Wang, Chunli | Wu, Guangyao | Yang, Jingnan | Wen, Yanan | Meng, Shuangshuang | Lin, Xuhong | Pang, Xiaobin | An, Lei
Pesticides pollution has caused serious environmental problems in recent years, and mounting evidence has shown that more and more insecticides have serious risk in human health. Emamectin Benzoate formally regarded as a highly safety insecticide based on its exclusive targets, but the cytotoxicity to human lung was ignored for a long time. In the present study, bioassay experiments were used to assess the toxicity of the Emamectin Benzoatein on human non-target cells including cell viability assay, DNA damage assay, flow cytometer assay and western blotting assay. The results indicated that Emamectin Benzoatecan cause the inhibition of the proliferation, cytochrome c release, activation of caspase-3/9 and increase Bax/Bcl-2 ratio, which means it induced the cytotoxicity on 16HBE cells associated with the mitochondrial apoptosis. Besides, the DNA damge caused by the Emamectin Benzoate suggest it has a potential genotoxic effect on human lung cells.
Show more [+] Less [-]Acrolein-induced apoptosis of smooth muscle cells through NEAT1-Bmal1/Clock pathway and a protection from asparagus extract
2020
Chen, Lijun | Wu, Xiaoyue | Zeb, Falak | Huang, Yunxiang | An, Jing | Jiang, Pan | Chen, Aochang | Xu, Chuyue | Feng, Qing
Apoptosis of vascular smooth muscle cells (VSMCs) accelerates manifestation of plaque vulnerability in atherosclerosis. Long noncoding RNA NEAT1 participates in the proliferation and apoptosis of cells. In addition, circadian clock genes play a significant role in cell apoptosis. However, whether acrolein, an environmental pollutant, affects the apoptosis of VSMCs by regulating NEAT1 and clock genes is still elusive. We established VSMCs as an atherosclerotic cell model in vitro. Acrolein exposure reduced survival rate of VSMCs, and raised apoptosis percentage through upregulating the expression of Bax, Cytochrome c and Cleaved caspase-3 and downregulating Bcl-2. Asparagus extract (AE), as a dietary supplementation, was able to protect VSMCs against acrolein-induced apoptosis. Expression of NEAT1, Bmal1 and Clock was decreased by acrolein, while was ameliorated by AE. Knockdown of NEAT1, Bmal1 or Clock promoted VSMCs apoptosis by regulating Bax, Bcl-2, Cytochrome c and Caspase-3 levels. Correspondingly, overexpression of NEAT1 inhibited the apoptosis. We also observed that silence of NEAT1 repressed the expression of Bmal1/Clock and vice versa. In this study, we demonstrated that VSMCs apoptosis induced by acrolein was associated with downregulation of NEAT1 and Bmal1/Clock. AE alleviated the effects of proapoptotic response and circadian disorders caused by acrolein, which shed a new light on cardiovascular protection.
Show more [+] Less [-]Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride
2016
Zhang, Shun | Niu, Qiang | Gao, Hui | Ma, Rulin | Lei, Rongrong | Zhang, Cheng | Xia, Tao | Li, Pei | Xu, Chunyan | Wang, Chao | Chen, Jingwen | Dong, Lixing | Zhao, Qian | Wang, Aiguo
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague–Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity.
Show more [+] Less [-]p53-dependent apoptosis contributes to di-(2-ethylhexyl) phthalate-induced hepatotoxicity
2016
Ha, Mei | Wei, Li | Guan, Xie | Li, Lianbing | Liu, Changjiang
Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread non-occupational human exposure through multiple routes and media. DEHP has various deleterious effects including hepatotoxicity. p53 protein is a central sensor in cell apoptosis. In order to clarify the roles of p53 in DEHP-induced hepatotoxicity, Sprague–Dawley (SD) rats were dosed daily with DEHP by gavage for 30 days; BRL cells (rat liver cell line) were treated with DEHP for 24 h after pretreatment with NAC or small interfering RNA (siRNA). Results indicated that after exposure to DEHP, hepatic histological changes such as hepatocyte edema, vacuolation and hepatic sinusoidal dilation, and increased apoptosis index were observed. In the liver, DEHP induced oxidative stress and DNA damage, which activated p53 in vivo and in vitro. Pretreatment with NAC significantly reduced ROS level and p53 expression in BRL cells. The suppressed Mdm2 also contributed to p53 accumulation. Activated p53 mediated hepatocyte apoptosis via the intrinsic mitochondrial pathway, inhibiting anti-apoptotic Bcl-2 and Bcl-xL and inducing pro-apoptotic Bax, cytochrome c and caspases. In p53-silenced BRL cells, hepatocyte apoptosis mediated by p53 was attenuated. PCNA protein level was upregulated after p53 gene silencing. However, the Fas/FasL apoptotic pathway did not exhibit activated signs in DEHP-caused hepatotoxicity. Taken together, DEHP-caused oxidative stress and Mdm2 downregulation contribute to p53 activation. The p53-dependent apoptotic pathway plays critical and indispensable roles in DEHP-induced hepatotoxicity, while the Fas/FasL pathway does not involve in this molecular event.
Show more [+] Less [-]Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Show more [+] Less [-]The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis
2021
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
Show more [+] Less [-]