Refine search
Results 1-10 of 59
Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change
2021
Muir, Derek C.G. | Galarneau, Elisabeth
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada’s environmental measurement strategy and biogeochemical modelling capability.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning
2021
Pichler, Nikola | Maria de Souza, Fernanda | Ferreira dos Santos, Valdenira | Martins, César C.
The Amazon coastal zone has become contaminated with organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, information about their distribution and sources in this area is scarce, despite increasing deforestation and oil exploitation. Therefore, individual PAHs were analysed in the sediments of the Oyapock estuary, which is located in the Amazon coastal zone. This study provides information about the spatial and short-term temporal distributions of PAHs and discusses the major sources of PAHs to better understand the anthropogenic processes occurring in adjacent areas. The concentrations of all sixteen priority PAHs defined by the US EPA (United States Environmental Protection Agency, ∑₁₆PAHs) ranged from 10.9 to 138.8 ng g⁻¹ with a mean and standard deviation = 37.9 ± 20.5 and indicated that this estuary is not contaminated, while the mean levels were similar to those found in other Amazon regions and pristine areas along the coast of Brazil. No significant differences were found in the sedimentary PAHs levels between the wet and dry sampling campaigns, despite the different climatic conditions. Diagnostic ratios, positive matrix factorization (PMF) and cluster analysis have shown that the majority of the investigated PAHs were derived from combustion processes (at least 55.1%, as estimated by the PMF model). Localized source inputs from oil and its by-products concomitantly with natural/biogenic sources appear to be secondary sources. The PAH contribution from biomass and wood combustion was approximately 13.6% and was relatively lower than other regions of the Amazon that are undergoing massive biomass burning. As the first study of PAHs in this region, this study provides vital information on the healthy state of the estuary and can serve as a baseline for assessing the impacts of acute oil disasters or the chronic input of PAHs as a result of human settlements.
Show more [+] Less [-]CO2, CO, hydrocarbon gases and PM2.5 emissions on dry season by deforestation fires in the Brazilian Amazonia
2019
Amaral, Simone Simões | Costa, Maria Angélica Martins | Soares Neto, Turibio Gomes | Costa, Marillia Pereira | Dias, Fabiana Ferrari | Anselmo, Edson | Santos, José Carlos dos | Carvalho, João Andrade de
The rate of deforestation in Brazil increased by 29% between 2015 and 2016, resulting in an increase of greenhouse gas emissions (GHG) of 9%. Deforestation fires in the Amazonia are the main source of GHG in Brazil. In this work, amounts of CO2, CO, main hydrocarbon gases and PM2.5 emitted during deforestation fires, under real conditions directly in Brazilian Amazonia, were determined. A brief discussion of the relationship between the annual emission of CO2 equivalent (CO2,eq) and Paris Agreement was conducted. Experimental fires were carried out in Western Amazonia (Candeias do Jamari, Rio Branco and Cruzeiro do Sul) and results were compared with a previous fire carried out in Eastern Amazonia (Alta Floresta). The average total fresh biomass on the ground before burning and the total biomass consumption were estimated to be 591 ton ha−1 and 33%, respectively. CO2, CO, CH4, and non–methane hydrocarbon (NMHC) average emission factors, for the four sites, were 1568, 140, 8, and 3 g kg−1 of burned dry biomass, respectively. PM2.5 showed large variation among the sites (0.9–16 g kg−1). Emissions per hectare of forest were estimated as 216,696 kg of CO2, 18,979 kg of CO, 1,058 kg of CH4, and 496 kg of NMHC. The average annual emission of equivalent CO2 was estimated as 301 ± 53 Mt year−1 for the Brazilian Amazonia forest. From 2013, the estimated CO2,eq showed a trend to increase in Amazon region. The present study is an alert and provides important information that can be used in the development of the public policies to control emissions and deforestation in the Brazilian Amazonia.
Show more [+] Less [-]Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan
2010
Tahir, S.N.A. | Rafique, M. | Alaamer, A.S.
Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO2, CH4 and N2O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO2-equivalent has been estimated to be 533019 t y-1.
Show more [+] Less [-]Integrating multiple lines of evidence to assess freshwater ecosystem health in a tropical river basin
2021
Chancay, Juseth E. | Lucas-Solis, Oscar | Alvear-S, Daniela | Martínez-R, Dayana | Mena, Gisella | Zurita, Bryan | Carrasco-S, Luis | Carrillo, Henry | Segarra, Víctor | Naranjo, Elizabeth | Coronel, Brian | Espinosa, Rodrigo | Cabrera, Marcela | Capparelli, Mariana V. | Celi, Jorge E.
Degradation of freshwater ecosystems by uncontrolled human activities is a growing concern in the tropics. In this regard, we aimed at testing an integrative framework based on the IFEQ index to assess freshwater ecosystem health of river basins impacted by intense livestock and agricultural activities, using the Muchacho River Basin (MRB) as a case study. The IFEQ combine multiple lines of evidence such as riverine hydromorphological analysis (LOE 1), physicochemical characterization using ions and pesticides (LOE 2), aquatic macroinvertebrate monitoring (LOE 3), and phytotoxicological essays with L. sativa (LOE 4). Overall, results showed an important reduction in streamflow and an elevated increase in ion concentrations along the MRB caused by deforestation and erosion linked to agricultural and livestock activities. Impacts of the high ion concentrations were evidenced in macroinvertebrate communities as pollution-tolerant families, associated with high conductivity levels, represented 92 % of the total abundance. Pollution produced by organophosphate pesticides (OPPs) was critical in the whole MRB, showing levels that exceeded 270-fold maximum threshold for malathion and 30-fold for parathion, the latter banned in Ecuador. OPPs concentrations were related to low germination percentages of Lactuca sativa in sediment phytotoxicity tests. The IEFQ index ranged from 44.4 to 25.6, indicating that freshwater ecosystem conditions were “bad” at the headwaters of the MRB and “critical” along the lowest reaches. Our results show strong evidence that intense agricultural and livestock activities generated significant impacts on the aquatic ecosystem of the MRB. This integrative approach better explains the cumulative effects of human impacts, and should be replicated in other basins with similar conditions to help decision-makers and concerned inhabitants generate adequate policies and strategies to mitigate the degradation of freshwater ecosystems.
Show more [+] Less [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
Show more [+] Less [-]Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary
2018
Bernardino, Angelo Fraga | Gomes, Luiz Eduardo de Oliveira | Hadlich, Heliatrice Louise | Andrades, Ryan | Correa, Lucas Barreto
Despite over 21,000ha of mangrove forests being removed per year in Brazil, ecological changes following mangrove deforestation have been overlooked. Here we evaluated changes in benthic macrofaunal assemblages and food-webs at a mangrove removal and natural sites in a tropical estuary in Eastern Brazil. The impacted site had coarser sediment particle sizes suggesting significant changes in sedimentation processes after forest clearing. Spatial differences in macrofaunal abundance, biomass and diversity were not directly associated with the removal of mangrove forests, supporting recolonization of impacted areas by estuarine fauna. However, benthic assemblage composition, infaunal δ13C signatures and food-web diversity markedly differed at the impacted site being strongly related to sedimentary changes. The loss of infaunal trophic diversity that followed mangrove removal suggests that large-scale forest clearing may impact estuarine food webs, with potential consequences to nearby coastal ecosystems given the high clearing rate of mangrove forests in Brazil.
Show more [+] Less [-]More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs
2017
Walsh, J.J. | Lenes, J.M. | Weisberg, R.H. | Zheng, L. | Hu, C. | Fanning, K.A. | Snyder, R. | Smith, J.
Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine.
Show more [+] Less [-]Mechanical performance and Taguchi optimization of kenaf fiber/cement-paperboard composite for interior application
2022
Akinwande, Abayomi Adewale | Balogun, Oluwatosin Abiodun | Romanovski, Valentin | Danso, Humphrey | Kamarou, Maksim | Ademati, Akeem Oladele
Demand for particleboards keeps increasing and as such more trees are fell for its production, engendering deforestation. For the purpose of reducing falling of trees, this study, focused on recycling of waste paper in the development of paperboard as alternative to particleboards used for furniture and interior household applications. Kenaf fiber (KF) was blended at varying proportions of 0, 1, 2, 3, 4, and 5 wt.% with 20 wt.% constant cement and 20 wt.% constant coconut shell powder while the remaining was paper pulp. Board specimen developed were cured for 14, 28, and 90 days and mechanical properties were examined. Results obtained showed that fiber dosage improved bond strength and screw holding strengths as compared with the control mix. Similarly, modulus of rupture was enhanced with KF loading as compared with control mix while 1 to 3 wt.% KF spawned enhancement of modulus of elasticity. However, 4 and 5 wt.% KF led to a reduction in the modulus. Infusion of the fiber enhanced tensile strength from 1 to 3 wt.% content. 14-day and 28-day curing periods were observed to improve properties while the 90-day curing period is detrimental to all properties. Optimization via signal-to-noise ratio revealed an optimum mix of 2 wt.% obtained for fiber and an optimum curing duration of 28 days.
Show more [+] Less [-]