Refine search
Results 1-10 of 503
Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers.
2006
Mathieu, Olivier | Hénault, Catherine | Lévêque, Jean | Baujard, E. | Milloux, Marie-Jeanne | Andreux, Francis | Microbiologie du Sol et de l'Environnement (MSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB) | Work funded by the Conseil Régional de Bourgogne
8 pages | International audience | Microbial transformations of nitrification and denitrification are the main sources of nitrous oxide (N2O) from soils. Relative contributions of both processes to N2O emissions were estimated on an agricultural soil using 15N isotope tracers (15NH4+ or 15NO3-), for a 10-day batch experiment. Under unsaturated and saturated conditions, both processes were significantly involved in N2O production. Under unsaturated conditions, 60% of N-N2O came from nitrification, while denitrification contributed around 85-90% under saturated conditions. Estimated nitrification rates were not significantly different whatever the soil moisture content, whereas the proportion of nitrified N emitted as N2O changed from 0.13 to 2.32%. In coherence with previous studies, we interpreted this high value as resulting from the decrease in O2 availability through the increase in soil moisture content. It thus appears that, under limiting aeration conditions, some values for N2O emissions through nitrification could be underestimated.
Show more [+] Less [-]Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter
2022
Li, Tong | Jin, Lili | Zhu, Shanshan | Zhang, Xuxiang | Ren, Hongqiang | Huang, Hui
It is difficult to achieve simultaneous and efficient removal of heterocyclic drugs (HCDs) and total nitrogen (TN) in conventional denitrification biofilter (DNBF). Inspired by the effective degradation of refractory organic matter by cobalt-based advanced oxidation process and the need for in-situ upgrading of DNBF, peracetic acid (PAA)/cobalt-loaded ceramsite-based DNBF system was constructed for the first time to treat biochemical tailwater containing HCDs. Results showed that PAA/Co-DNBF had relatively high removal rates for the four HCDs with the order of CBZ > TMP > SDZ > SMX, and the optimal DNBF was H2 with 150 μg L⁻¹of PAA. Overall, TN and HCDs removal increased by 178%–455% and 2.50%–40.99% respectively. When the influent concentration of NO₃⁻-N, COD and each HCDs of 20 mg/L, 60 mg/L and 20 μg/L, below 15 mg/L of effluent TN and the highest average removal rate of SMX (67.77%) could be achieved, under HRT of 4 h in H2. More even distribution of microbial species and low acute toxicity of effluent were also achieved. More even distribution of microbial species and low acute toxicity of effluent were also achieved. In addition, high extracellular polymeric substance (EPS) content and Gordonia after the addition of PAA contributed to the degradation of HCDs. This study supplied a potentially effective strategy for the treatment of biochemical tailwater containing HCDs and provided new insight into the advance of denitrification technology.
Show more [+] Less [-]Anthropogenic nitrate attenuation versus nitrous oxide release from a woodchip bioreactor
2022
White, Shane A. | Morris, Shaun A. | Wadnerkar, Praktan D. | Woodrow, Rebecca L. | Tucker, James P. | Holloway, Ceylena J. | Conrad, Stephen R. | Sanders, Christian J. | Hessey, Samantha | Santos, Isaac R.
Nitrogen loss via overland flow from agricultural land use is a global threat to waterways. On-farm denitrifying woodchip bioreactors can mitigate NO₃⁻ exports by increasing denitrification capacity. However, denitrification in sub-optimal conditions releases the greenhouse gas nitrous oxide (N₂O), swapping the pollution from aquatic to atmospheric reservoirs. Here, we assess NO₃⁻-N removal and N₂O emissions from a new edge-of-field surface-flow bioreactor during ten rain events on intensive farming land. Nitrate removal rates (NRR) varied between 5.4 and 76.2 g NO₃⁻-N m⁻³ wetted woodchip d⁻¹ with a mean of 30.3 ± 7.3 g NO₃⁻-N m⁻³. The nitrate removal efficiency (NRE) was ∼73% in ideal hydrological conditions and ∼18% in non-ideal conditions. The fraction of NO₃⁻-N converted to N₂O (rN₂O) in the bioreactor was ∼3.3 fold lower than the expected 0.75% IPCC emission factor. We update the global bioreactor estimated Q₁₀ (NRR increase every 10 °C) from a recent meta-analysis with previously unavailable data to >20 °C, yielding a new global Q₁₀ factor of 3.1. Mean N₂O CO₂-eq emissions (431.9 ± 125.4 g CO₂-eq emissions day⁻¹) indicate that the bioreactor was not significantly swapping aquatic NO₃⁻ for N₂O pollution. Our estimated NO₃⁻-N removal from the bioreactor (9.9 kg NO₃⁻-N ha⁻¹ yr⁻¹) costs US$13.14 per kg NO₃⁻-N removed and represents ∼30% NO₃⁻-N removal when incorporating all flow and overflow events. Overall, edge-of-field surface-flow bioreactors seem to be a cost-effective solution to reduce NO₃⁻-N runoff with minor pollution swapping to N₂O.
Show more [+] Less [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Show more [+] Less [-]Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response
2022
Gao, Zhihong | Ali, Amjad | Su, Junfeng | Chang, Qiao | Bai, Yihan | Wang, Yue | Liu, Yu
The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17β-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L⁻¹. Further increased of initial E2 (2 and 3 mg L⁻¹) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.
Show more [+] Less [-]Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels
2022
Liu, Ming | He, Yixin | Cao, Li | Zhi, Yue | He, Xianjin | Li, Tao | Wei, Yanyan | Yuan, Xiaobing | Liu, Bingsheng | He, Qiang | Li, Hong | Miao, Xiaojun
Dissolved inorganic nitrogen (DIN) is considered the main factor that induces eutrophication in water, and is readily influenced by hydrodynamic activities. In this study, a 4-year field investigation of nitrogen dynamics in a turbulent river was conducted, and a laboratory study was performed in the approximately homogeneous turbulence simulation system to investigate potential mechanisms involved in DIN transformation under turbulence. The field investigation revealed that, contrary to NO⁻₃ dynamics, the NH⁺₄ concentrations in water were lower in flood seasons than in drought seasons. Further laboratory results demonstrated that limitation of dissolved oxygen (DO) caused inactive nitrification and active denitrification in static river sediment. In contrast, the increased DO levels in turbulent river intensified the mineralization of organic nitrogen in sediment; moreover, ammonification and nitrification were activated, while denitrification was first activated and then depressed. Turbulence therefore decreased NH⁺₄ and NO⁻₂ concentrations, but increased NO⁻₃ and total DIN concentrations in the overlying water, causing the total DIN to increase from 0.4 mg/L to maximum of 1.0 and 1.7 mg/L at low and high turbulence, respectively. The DIN was maintained at 0.7 and 1.0 mg/L after the 30-day incubation under low and high turbulence intensities (ε) of 3.4 × 10⁻⁴ and 7.4 × 10⁻² m²/s³, respectively. These results highlight the critical role of DO in DIN budgets under hydrodynamic turbulence, and provide new insights into the DIN transport and transformation mechanisms in turbulent rivers.
Show more [+] Less [-]Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate
2021
Castellanos, Reynel Martínez | Bassin, João P. | Bila, Daniele M. | Dezotti, Márcia
In this study, the biodegradation of endocrine-disrupting chemicals (EDCs) (namely the natural and synthetic estrogens 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), respectively) was assessed in an aerobic granular sludge (AGS) sequencing batch reactor (SBR) treating simulated domestic sewage. To better understand the fate of these compounds, their concentrations were determined in both liquid and solid (biomass) samples. Throughout the operation of the reactor, subjected to alternating anaerobic and aerated conditions, the removal of the hormones, both present in the influent at a concentration of 20 μg L⁻¹, amounted to 99% (for E2) and 93% (for EE2), with the latter showing higher resistance to biodegradation. Through yeast estrogen screen assays, an average moderate residual estrogenic activity (0.09 μg L⁻¹ EQ-E2) was found in the samples analysed. E2 and EE2 profiles over the SBR cycle suggest a rapid initial adsorption of these compounds on the granular biomass occurring anaerobically, followed by biodegradation under aeration. A possible sequence of steps for the removal of the micropollutants, including the key microbial players, was proposed. Besides the good capability of the AGS on EDCs removal, the results revealed high removal efficiencies (>90%) of COD, ammonium and phosphate. Most of the incoming organics (>80%) were consumed under anaerobic conditions, when phosphate was released (75.2 mgP L⁻¹). Nitrification and phosphate uptake took place along the aeration phase, with effluent ammonium and phosphate levels around 2 mg L⁻¹. Although nitrite accumulation took place over the cycle, nitrate consisted of the main oxidized nitrogen form in the effluent. The specific ammonium and phosphate uptake rates attained in the SBR were found to be 3.3 mgNH₄⁺-N gVSS⁻¹.h⁻¹ and 6.7 mgPO₄³⁻-P gVSS⁻¹ h⁻¹, respectively, while the specific denitrification rate corresponded to 1.0 mgNOₓ⁻-N gVSS⁻¹ h⁻¹.
Show more [+] Less [-]Increase of N2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms
2021
Li, Shengjie | Pang, Yunmeng | Ji, Guodong
Microbial denitrification is a main source of nitrous oxide (N₂O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N₂O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N₂O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N₂O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N₂O emissions in natural environments.
Show more [+] Less [-]Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils
2021
Wei, Wei | Isobe, Kazuo | Shiratori, Yutaka | Yano, Midori | Toyoda, Sakae | Koba, Keisuke | Yoshida, Naohiro | Shen, Haoyang | Senoo, Keishi
Nitrous oxide (N₂O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH₃ oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N₂O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N₂O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH₃ oxidizers and denitrifiers, including the previously-overlooked taxa, in N₂O emission from a cropland, and address the biological and environmental factors controlling the N₂O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N₂O production than the long-studied ones. We also demonstrated that the N₂O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N₂O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N₂O production by overlooked denitrifying bacteria and N₂O reduction by long-studied N₂O-reducing bacteria after manure fertilization into the plowed layer; and (3) N₂O production by NH₃-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH₃ oxidizers and denitrifiers, which will help us understand the environmental context-dependent N₂O emission processes.
Show more [+] Less [-]Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses
2021
Zhan, Yang | Xie, Junfei | Yao, Zhisheng | Wang, Rui | He, Xingjia | Wang, Yan | Zheng, Xunhua
Urban turfgrass ecosystems are expected to increase at unprecedented rates in upcoming decades, due to the increasing population density and urban sprawl worldwide. However, so far urban turfgrasses are among the least understood of all terrestrial ecosystems concerning their impact on biogeochemical N cycling and associated nitrous oxide (N₂O) and nitric oxide (NO) fluxes. In this study, we aimed to characterize and quantify annual N₂O and NO fluxes from urban turfgrasses dominated by either C4, warm-season species or C3, cool-season and shade-enduring species, based on year-round field measurements in Beijing, China. Our results showed that soil N₂O and NO fluxes varied substantially within the studied year, characterizing by higher emissions during the growing season and lower fluxes during the non-growing season. The regression model fitted by soil temperature and soil water content explained approximately 50%–70% and 31%–38% of the variance in N₂O and NO fluxes, respectively. Annual cumulative emissions for all urban turfgrasses ranged from 0.75 to 1.27 kg N ha⁻¹ yr⁻¹ for N₂O and from 0.30 to 0.46 kg N ha⁻¹ yr⁻¹ for NO, both are generally higher than those of Chinese natural grasslands. Non-growing season fluxes contributed 17%–37% and 23%–30% to the annual budgets of N₂O and NO, respectively. Our results also showed that compared to the cool-season turfgrass, annual N₂O and NO emissions were greatly reduced by the warm-season turfgrass, with the high root system limiting the availability of inorganic N substrates to soil microbial processes of nitrification and denitrification. This study indicates the importance of enhanced N retention of urban turfgrasses through the management of effective species for alleviating the potential environmental impacts of these rapidly expanding ecosystems.
Show more [+] Less [-]