Refine search
Results 31-40 of 734
Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters Full text
2018
Liu, Xue | Feng, Hua–Yuan | Fu, Jing–Wei | Sun, Dan | Cao, Yue | Chen, Yanshan | Xiang, Ping | Liu, Yungen | Ma, Lena Q.
While phosphate (P) inhibits arsenic (As) uptake by plants, phytate increases As uptake by As-hyperaccumulator Pteris vittata. Here we tried to understand the underling mechanisms by investigating the roles of phytate in soil As desorption, P transport in P. vittata, short-term As uptake, and plant growth and As accumulation from soils. Sterile soil was used to exclude microbial degradation on phytate. Results showed that inorganic P released 3.3-fold more As than that of phytate from soil. However, P. vittata accumulated 2–2.5 fold more As from soils with phytate than that in control and P treatment. In addition, different from P suppression on As uptake, solution uptake experiment showed that As uptake in phytate treatment was comparable to that of control under 0.1–7.5 μM As after 1–24 h. Moreover, responding to phytate, P. vittata P transporter PvPht1;3 increased by 3-fold while PvPht1;1 decreased by 65%. The data suggested that phytate upregulated PvPht1;3, thereby contributing to As uptake in P. vittata. Our results showed that, though with lower As release from soil compared to P, phytate induced more As uptake and better growth in P. vittata by upregulating P transporters.
Show more [+] Less [-]Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment Full text
2018
Lee, Dong Wan | Lee, Hanbyul | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
Crude oil and its derivatives are considered as one group of the most pervasive environmental pollutants in marine environments. Bioremediation using oil-degrading bacteria has emerged as a promising green cleanup alternative in more recent years. The employment of biosurfactant-producing and hydrocarbon-utilizing indigenous bacteria enhances the effectiveness of bioremediation by making hydrocarbons bioavailable for degradation. In this study, the best candidates of biosurfactant-producing indigenous bacteria were selected by screening of biochemical tests. The selected bacteria include Bacillus algicola (003-Phe1), Rhodococcus soli (102-Na5), Isoptericola chiayiensis (103-Na4), and Pseudoalteromonas agarivorans (SDRB-Py1). In general, these isolated species caused low surface tension values (33.9–41.3 mN m−1), high oil spreading (1.2–2.4 cm), and hydrocarbon emulsification (up to 65%) warranting active degradation of hydrocarbons. FT-IR and LC-MS analyses indicated that the monorhamnolipid (Rha-C16:1) and dirhamnolipid (Rha-Rha-C6-C6:1) were commonly produced by the bacteria as potent biosurfactants. The residual crude oil after the biodegradation test was quantitated using GC-MS analysis. The bacteria utilized crude oil as their sole carbon source while the amount of residual crude oil significantly decreased. In addition the cell-free broth containing biosurfactants produced by bacterial strains significantly desorbed crude oil in oil-polluted marine sediment. The selected bacteria might hold additional capacity in crude oil degradation. Biosurfactant-producing indigenous bacteria therefore degrade crude oil hydrocarbon compounds, produce biosurfactants that can increase the emulsification of crude oil and are thus more conducive to the degradation of crude oil.
Show more [+] Less [-]Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite Full text
2018
Kaeseberg, Thomas | Zhang, Jin | Schubert, Sara | Oertel, Reinhard | Siedel, Heiner | Krebs, Peter
In this study, 14 antibiotics and one metabolite were determined in sewages and size-dependent sewer sediments at three sampling sites in the city of Dresden, Germany. Adsorption and desorption experiments were conducted with fractionated sediments. All antibiotics and the metabolite investigated were determined in the sewages; 9 of 14 antibiotics and the metabolite were adsorbed to sewer sediments. The adsorbed antibiotic loads in ng of antibiotic per g of sediment correlated with antibiotic concentrations in ng of antibiotic per litre of sewage. The size fractions <63 μm, 63–100 μm and 100–200 μm had significantly higher loads of adsorbed antibiotics than bigger size fractions. In general, the adsorbed load decreased with an increasing size fraction, but size fractions >200 μm had similar levels of adsorbed antibiotic loads. An antibiotic-specific adsorption coefficient, normalized to organic content, was calculated: four antibiotics exceeded 10.0 L g⁻¹, three antibiotics fell below 1.0 L g⁻¹ and all residual antibiotics and the metabolite were in the range of 1.0–10.0 L g⁻¹. The adsorbed antibiotic load and the organic matter increased with time, generally. The mineral composition had a minor effect on the adsorption coefficients. Desorption dynamics of five antibiotics and the metabolite were quantified. Regardless of the size fraction, the predominant part of the equilibrium antibiotic concentration was desorbed after 10 min. The calculated desorption distribution coefficient indicated adsorption as irreversible at the pH investigated (7.5 ± 0.5).
Show more [+] Less [-]Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost Full text
2017
Zhu, Weiqin | Du, Wenhui | Shen, Xuyang | Zhang, Hangjun | Ding, Ying
Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb2+ and Cd2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb2+ and Cd2+ onto either CM or CV follows a Langmuir model and presents maximum Pb2+ and Cd2+ adsorption capacities of 102.77 mg g−1 and 38.11 mg g−1 onto CM and 170.65 and 43.01 mg g−1 onto CV, respectively. Kinetic studies show that the adsorption of Pb2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb2+ and Cd2+. FTIR analysis demonstrates that the adsorption of Pb2+ and Cd2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage.
Show more [+] Less [-]Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China Full text
2017
Chen, Season S. | Sun, Yuqing | Tsang, Daniel C.W. | Graham, Nigel J.D. | Ok, Yong Sik | Feng, Yujie | Li, Xiang-Dong
Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was representative of waters arising at different times after well creation. Temporal effects of produced water on metal/metalloid transport and sorption/desorption were investigated by using HYDRUS-1D transport modelling. Rapid breakthrough and long tailings of As(V) and Se(VI) transport were observed in Day 1 and Day 14 solutions, but were reduced in Day 90 solution probably due to the elevated ionic strength. The influence of produced water on the hydrogeological conditions (i.e., change between equilibrium and non-equilibrium transport) was evidenced by the change of tracer breakthrough curves before and after the leaching of produced water. This possibly resulted from the sorption of polyacrylamide (PAM (-CH2CHCONH2-)n) onto soil surfaces, through its use as a friction reducer in fracturing solutions. The sorption was found to be reversible in this study. Minimal amounts of sorbed As(V) were desorbed whereas the majority of sorbed Se(VI) was readily leached out, to an extent which varied with the composition of the produced water. These results showed that the mobilization of As(V) and Se(VI) in soil largely depended on the solution pH and ionic strength. Understanding the differences in metal/metalloid transport in produced water is important for proper risk management.
Show more [+] Less [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, Michel | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J.
Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, Michel | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J.
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Show more [+] Less [-]Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil Full text
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
International audience | This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches.First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties.Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using C-13-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity.These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Show more [+] Less [-]Elemental mercury: Its unique properties affect its behavior and fate in the environment Full text
2017
Gonzalez-Raymat, Hansell | Liu, Guangliang | Liriano, Carolina | Li, Yanbin | Yin, Yongguang | Shi, Jianbo | Jiang, Guibin | Cai, Yong
Elemental mercury (Hg0) has different behavior in the environment compared to other pollutants due to its unique properties. It can remain in the atmosphere for long periods of time and so can travel long distances. Through air-surface (e.g., vegetation or ocean) exchange (dry deposition), Hg0 can enter terrestrial and aquatic systems where it can be converted into other Hg species. Despite being ubiquitous and playing a key role in Hg biogeochemical cycling, Hg0 behavior in the environment is not well understood. The objective of this review is to provide a better understanding of how the unique physicochemical properties of Hg0 affects its cycling and chemical transformations in different environmental compartments. The first part focuses on the fundamental chemistry of Hg0, addressing why Hg0 is liquid at room temperature and the formation of amalgam, Hg halide, and Hg chalcogenides. The following sections discuss the long-range transport of Hg0 as well as its redistribution in the atmosphere, aquatic and terrestrial systems, in particular, on the sorption/desorption processes that occur in each environmental compartment as well as the involvement of Hg0 in chemical transformation processes driven by photochemical, abiotic, and biotic reactions.
Show more [+] Less [-]Adsorptive removal of pharmaceutical antibiotics from aqueous solution by porous covalent triazine frameworks Full text
2017
Liu, Jingliang | Zhou, Dongmei | Xu, Zhaoyi | Zheng, Shourong
The exposures of pharmaceutical antibiotics in water solution caused potential risks for ecological environment and human health. In the present study, porous covalent triazine frameworks (CTFs) were synthesized and the adsorption behavior of sulfamethoxazole (SMX) and tylosin (TL) was investigated. The CTFs were characterized by X-ray diffraction, transform infrared and N2 adsorption/desorption. Sulfamethoxazole displayed much stronger adsorption than tylosin on microporous CTF-1 adsorbent due to the pore-filling effect. While the adsorption of bulky tylosin on microporous CTF-1 was suppressed because of the size exclusion effect. Additionally, the porous CTFDCBP showed stronger adsorption affinity and faster adsorption kinetics than other porous adsorbents, which was attributed to wide pore size distribution and open pore structure. Findings in this study highlight the potential of using porous CTFs as a potential adsorbent to eliminate antibiotics from water, especially for selective adsorption of bulky molecular pollutant.
Show more [+] Less [-]Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment Full text
2017
Cheng, Guanghuan | Sun, Mingyang | Ge, Xinlei | Xu, Xinhua | Lin, Qi | Lou, Liping
The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment.
Show more [+] Less [-]High molecular weight organic compounds (HMW-OCs) in severe winter haze: Direct observation and insights on the formation mechanism Full text
2016
Duan, F.K. | He, K.B. | Ma, Y.L. | Ihozaki, T. | Kawasaki, H. | Arakawa, R. | Kitayama, S. | Tujimoto, K. | Huang, T. | Kimoto, T. | Furutani, H. | Toyoda, M.
High molecular weight organic compounds (HMW-OCs), formed as secondary organic aerosols (SOA), have been reported in many laboratory studies. However, little evidence of HMW-OCs formation, in particular during winter season in the real atmosphere, has been reported. In January 2013, Beijing faced historically severe haze pollution, in which the hourly PM2.5 concentration reached as high as 974 μg m−3. Four typical haze events (HE1 to HE4) were identified, and HE2 (Jan. 9–16) was the most serious of these. Based on the hourly observed chemical composition of PM2.5 and the daily organic composition analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we found that abundant ion peaks in m/z 200–850 appeared on heavy haze days, whereas these were negligible on a clear day, indicating the existence of HMW-OCs in the wintertime haze. A negative nonlinear correlation between HMW-OCs and O3 suggested that gas oxidation was not likely to be the dominant mechanism for HMW-OCs formation. During the heavy haze events, the relative humidity and mass ratio of H2O/PM2.5 reached as high as 80% and 0.2, respectively. The high water content and its good positive correlation with HMW-OCs indicated that an aqueous-phase process may be a significant pathway in wintertime. The evidence that acidity was much higher during HE2 (0.37 μg m−3) than on other days, as well as its strong correlation with HMW-OCs, indicated that acid-catalyzed reactions likely resulted in HMW-OCs formation during the heavy winter haze in Beijing.
Show more [+] Less [-]