Refine search
Results 1-10 of 16
Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen receptor transcriptional activation assays
2021
Park, Yooheon | Park, Juhee | Lee, Hee-Seok
We describe the androgen receptor (AR) agonistic/antagonistic effects of 140 veterinary drugs regulated in Republic of Korea, by setting maximum residue limits. It was conducted using two in vitro test guidelines of the Organization for Economic Cooperation and Development (OECD)—the AR-EcoScreen AR transactivation (TA) assay and the 22Rv1/MMTV_GR-KO AR TA assay. These were performed alongside the AR binding affinity assay to confirm whether their AR agonistic/antagonistic effects are based on the binding affinity to AR. Prior to conducting the AR TA assay, the proficiency test was passed the proficiency performance criterion for the AR agonist and AR antagonist assays. Among the veterinary drugs tested, four veterinary drugs (dexamethasone, trenbolone, altrenogest, and nandrolone) and six veterinary drugs (cymiazole, dexamethasone, zeranol, phenothiazine, bromopropylate, and isoeugenol) were determined as AR agonist and AR antagonist, respectively in both in vitro AR TA assays. Zeranol exhibited weak AR agonistic effects with a PC₁₀ value only in the 22Rv1/MMTV_GR-KO AR TA assay. Regarding changing the AR agonistic/antagonistic effects through metabolism, the AR antagonistic activities of zeranol, phenothiazine, and isoeugenol decreased significantly in the presence of phase I + II enzymes.These data indicate that various veterinary drugs could have the potential to disrupt AR-mediated human endocrine system. Furthermore, this is the first report providing information on AR agonistic/antagonistic effects of veterinary drugs using in vitro OECD AR TA assays.
Show more [+] Less [-]Effects-based monitoring of bioactive compounds associated with municipal wastewater treatment plant effluent discharge to the South Platte River, Colorado, USA
2021
Cavallin, Jenna E. | Beihoffer, Jon | Blackwell, Brett R. | Cole, Alexander R. | Ekman, Drew R. | Hofer, Rachel | Jastrow, Aaron | Kinsey, Julie | Keteles, Kristen | Maloney, Erin M. | Parman, Jordan | Winkelman, Dana L. | Villeneuve, Daniel L.
Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17β-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARɣ activity, there were no significant effects on PPARɣ-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.
Show more [+] Less [-]Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia)
2020
Malev, Olga | Lovrić, Mario | Stipaničev, Draženka | Repec, Siniša | Martinović-Weigelt, Dalma | Zanella, Davor | Ivanković, Tomislav | Sindičić Đuretec, Valnea | Barišić, Josip | Li, Mei | Klobučar, Göran
Chemical analysis of plasma samples of wild fish from the Sava River (Croatia) revealed the presence of 90 different pharmaceuticals/illicit drugs and their metabolites (PhACs/IDrgs). The concentrations of these PhACs/IDrgs in plasma were 10 to 1000 times higher than their concentrations in river water. Antibiotics, allergy/cold medications and analgesics were categories with the highest plasma concentrations. Fifty PhACs/IDrgs were identified as chemicals of concern based on the fish plasma model (FPM) effect ratios (ER) and their potential to activate evolutionary conserved biological targets. Chemicals of concern were also prioritized by calculating exposure-activity ratios (EARs) where plasma concentrations of chemicals were compared to their bioactivities in comprehensive ToxCast suite of in vitro assays. Overall, the applied prioritization methods indicated stimulants (nicotine, cotinine) and allergy/cold medications (prednisolone, dexamethasone) as having the highest potential biological impact on fish. The FPM model pointed to psychoactive substances (hallucinogens/stimulants and opioids) and psychotropic substances in the cannabinoids category (i.e. CBD and THC). EAR confirmed above and singled out additional chemicals of concern - anticholesteremic simvastatin and antiepileptic haloperidol. Present study demonstrates how the use of a combination of chemical analyses, and bio-effects based risk predictions with multiple criteria can help identify priority contaminants in freshwaters. The results reveal a widespread exposure of fish to complex mixtures of PhACs/IDrgs, which may target common molecular targets. While many of the prioritized chemicals occurred at low concentrations, their adverse effect on aquatic communities, due to continuous chronic exposure and additive effects, should not be neglected.
Show more [+] Less [-]Occurrence and level of emerging organic contaminant in fish and mollusk from Klang River estuary, Malaysia and assessment on human health risk
2019
Omar, T.F.T. | Ahmad Zaharin Aris, | Fatimah Md. Yusoff, | Mustafa, Shuhaimi
The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
Show more [+] Less [-]Multigenerational effects of two glucocorticoids (prednisolone and dexamethasone) on life-history parameters of crustacean Ceriodaphnia dubia (Cladocera)
2017
Bal, Navdeep | Kumar, Anupama | Du, Jun | Nugegoda, Dayanthi
Synthetic glucocorticoids (GCs) such as dexamethasone (DEX) and prednisolone (PDS) have been used since the 1940s to cure inflammatory and auto-immune disorders. Their use has been linked to a host of deleterious effects in aquatic ecosystems such as osteoporosis in vertebrates, developmental impairments in molluscs and reduced fecundity and growth in cladocerans. Apart from these handful of studies, the effects of GCs on aquatic biota are largely unknown. The present study is a first of its kind aiming to assess the multi-generational exposure effects of DEX and PDS on the life history parameters of Ceriodaphnia dubia (C. dubia). Multigenerational studies have proved to be an advantage in assessing the cumulative damage caused by aquatic toxicants at the population level of the exposed organisms over a period of successive generations using multiple biological endpoints. Test results demonstrated that C. dubia exhibited varied sensitivities towards both the studied chemicals however were more sensitive to DEX with 48-h EC50 (95% confidence interval) of 0.75 mg/L (CI: 0.59–0.92) in comparison to PDS [19 mg/L (CI: 15–23)]. EC10 values for F0 in a multigenerational chronic bioassays were 48 μg/L (CI: 37.4–61) for DEX and 460 μg/L (CI: 341–606) for PDS and in F3 were 2.2 μg/L (CI: 1.6–3.1) for DEX and 31 μg/L (CI: 19.4–46) for PDS. There was a positive trend of increased toxicity followed by reduced life history traits such as fecundity, brood size and time to first brood and intrinsic rate of population increase and body growth (length and area) of C. dubia in the case of both studied chemicals. The results from the current work highlighted the importance of multigenerational studies in identifying the evolutionary responses of stressed non-target aquatic organisms, and data obtained can be further used in developing water quality guidelines.
Show more [+] Less [-]Use of common carp (Cyprinus carpio) and Aeromonas salmonicida for detection of immunomodulatory effects of chemicals on fish
2017
Nakayama, Kei | Yamashita, Ryohei | Kitamura, Shin-Ichi
To develop a test for assessing the immunomodulatory effects of chemical pollutants on fish, we evaluated the effects of dexamethasone on the natural host–pathogen interaction between common carp (Cyprinus carpio) and Aeromonas salmonicida. Carp were exposed to 1mgL−1 dexamethasone for the entire experimental period. One week after the exposure test started, the exposed fish, as well as unexposed fish, were bath-infected with A. salmonicida. One hundred percent mortality was observed in bacteria-infected fish exposed to dexamethasone, whereas no infection-associated mortality was observed in infected fish in the absence of dexamethasone exposure. In a separate experiment, dexamethasone exposure significantly suppressed hemolytic complement activity in bacteria-infected fish. These results clearly indicate that exposure to a high concentration of dexamethasone suppressed the carp immune system and caused subsequent mortality. Thus, this proposed test method is likely to be useful for evaluating the immunomodulatory effects of chemicals in fish.
Show more [+] Less [-]Potential Application of Alternative Materials for Organic Pollutant Removal
2022
da Costa, Matheus Londero | Pavoski, Giovani | Espinosa, Denise Crocce Romano | de Vasconcellos, Noeli Júlia Schüssler | da Silva, William Leonardo
The work aims to synthesize and characterize vegetal charcoal (or biochar) from Syzygium cumini (AC-SC), evaluating the adsorption capacity for dexamethasone drug (DEX) removal, using the kinetic and equilibrium adsorption. The samples were characterized by N₂ porosimetry, X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, zeta potential, and zero charge point. Adsorption equilibrium was carried out applying the Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth models, and kinetic adsorption applied the pseudo-first order, pseudo-second order, Elovich, Avrami, and Weber-Morris models. AC-SC showed a heterogeneous and porous surface, negatively charged, crystalline structure, specific surface area of the 2.14 m² g⁻¹ and pHZCP = 7.36. About the effect of the AC-SC concentration, 5.0 g L⁻¹ showed the best DEX removal (53.02%), about the others’ concentration (2.0 and 7.5 g L⁻¹). About the equilibrium and kinetic adsorption, the Sips model and pseudo-second order showed the best experimental data adjusted, indicating that the adsorption monolayer was dependent on the ions onto the biosorbent, with a maximum adsorption capacity of 0.744 mg g⁻¹ after 180 min. Therefore, AC-SC can be used as an alternative material in the removal of organic pollutants, such as drug removal.
Show more [+] Less [-]In vitro antioxidant, antibacterial, and antihyperlipidemic potential of ethanolic Avicennia marina leaves extract supported by metabolic profiling
2021
Yassien, Eman E. | Hamed, Moaz M. | Abdelmohsen, Usama Ramadan | Hassan, Hanaa M. | Gazwi, Hanaa S. S.
This study aimed to examine the impact of ethanolic Avicennia marina (A. marina) leaves extract against seven pathogenic bacteria and the protective effect of this plant against hyperlipidemia caused by dexamethasone (DEX)-treated rats. Forty-eight male rats weighing between 150 and 200 g were randomly selected into six groups containing eight rats in each group. Moreover, in vitro antioxidant DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, FRAP (ferric reducing antioxidant power), and ABTS assay were also analyzed for leaf extract. Results showed that the IC₅₀ values were observed as 193.9 ± 1.03 μg/mL, 340.29 ± 8.16 μM TE/mg, and 326.8 ± 6.14 μM TE/mg for DPPH, FRAP, and ABTS radical scavenging activities, respectively. A. marina leaves ethanolic extract exhibited higher activity against Candida albicans and Bacillus subtilis, moderate activity against Salmonella typhimurium, and Vibrio damsel. The administration of DEX resulted in significant (P < 0.05) increase in the levels of MDA concentration, TG, TC, LDL, LDH, and glucose but decreased significantly in HDL. Treatment with A. marina extract positively reversed the distorted lipid profile and peroxidation and improved MDA, GSH, NO, and SOD activities in DEX-administered rats. Histological investigation of liver tissue sections showed that the treatment with A. marina leaves extract moderate the fatty change caused by DEX. It is concluded that A. marina leaves extract improved the hypolipidemic property of DEX administration in comparison with standard treatment with atorvastatin.
Show more [+] Less [-]Influence of Adsorption of Pharmaceuticals onto RO/NF Membranes on Their Removal from Water
2013
Dolar, Davor | Košutić, Krešimir | Ašperger, Danijela
Adsorption together with size exclusion and charge attraction/repulsion has to be taken into account when considering removal of pharmaceuticals as emerging contaminants from water by reverse osmosis and nanofiltration membranes. Glucocorticosteroids (hydrocortisone (HYDRO), dexamethasone (DEXA)), anesthetics (procaine, lidocaine) with relatively weak hydrophobicities (1 < log K O/W < 3), and membranes (XLE, LFC–1, CPA3, SWC1, NF90, and NF270) have been investigated in this study. Adsorption was studied by measuring the concentration of compounds in feed and permeate and by monitoring changes in membrane flux in the batch mode operation during 24 h. A decrease in the feed concentrations for HYDRO and DEXA (log K O/W < 2) was observed. The loss of these compounds in feed was associated with irreversible adsorption onto an NF270 and a CPA3 membrane. Therefore, when considering removal of pharmaceuticals with lower hydrophobicity, adsorption has to be particularly taken into account for membranes with bigger pores in the selective layer. Also, a high dipole moment and low water solubility affected adsorption on the membranes. For smaller and slightly more hydrophobic pharmaceuticals (log K O/W > 2), an increase in the feed concentration was obtained. Firstly, these compounds instantly adsorbed to the membrane. Secondly, the compounds diffused through the polymer matrix and desorbed to the permeate side after equilibrium had been reached.
Show more [+] Less [-]The Development of SPE Procedures and an UHPLC Method for the Simultaneous Determination of Ten Drugs in Water Samples
2010
Baranowska, Irena | Kowalski, Bartosz
Analytical procedures for the determination of pharmaceuticals from different therapeutic groups were proposed. These groups included the corticosteroids prednisolone and dexamethasone; the β-blockers sotalol, metoprolol, propranolol, and carvedilol; and the analgesic nonsteroidal anti-inflammatory drugs paracetamol, aspirin, metamizole, and ketoprofen. Reversed-phase ultrahigh performance liquid chromatography with an ultraviolet detector, different columns, different mobile phases, and gradient elution programmes were used to obtain the best separations within the shortest possible time. Solid-phase extraction was examined as a preconcentration step. The Oasis HLB column, with the highest recoveries (over 90% for most of the drugs), was chosen for the analysis of surface waters. Limits of detection ranged from 0.06 to 0.39 μg L⁻¹ for all drugs after optimisation of all analytical steps.
Show more [+] Less [-]