Refine search
Results 1-10 of 299
Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation Full text
2022
Na-Phatthalung, Warangkana | Keaonaborn, Dararat | Jaichuedee, Juthamas | Keawchouy, Suthiwan | Sinyoung, Suthatip | Musikavong, Charongpun
Silver nanoparticles (AgNPs) are used in many industries for multiple applications that inevitably release AgNPs into surface water sources. The formation kinetics of disinfection by-products (DBPs) in the presence of AgNPs was investigated during chlorination. Experiments were carried out with raw water from a canal in Songkhla, Thailand, which analyzed the formation potential (FP) of trihalomethanes FP (THMFP), iodo-trihalomethanes FP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP. Increased AgNP concentrations by 10–20 mg/L led to a higher specific formation rate of chloroform which is described by zero- and first-order kinetics. The increase in the specific formation of chloroform as increasing chlorine contact time could enhance both the THMFP rates and the maximum THMFP concentrations in all tested AgNPs. The AgNP content did not have a significant influence on I-THMFP and HANFP concentrations or speciation. The I-THMFP and HANFP increased in a short-chlorination time as mostly complete formation <12 h, and then the rate decreased as the reaction proceeded. The levels of THMs and many emerging DBPs are related to the presence of AgNPs in chlorinated water and chlorine reaction time. THMFP had a higher impact on integrated toxic risk value (ITRV) than I-THMFP and HANFP because of the chlorination of water with AgNPs. The chlorine reaction time was more effective for increasing the ITRV of THMFP than the level of AgNPs. Water treatment plants should control the DBPs that cause possible health risks from water consumption by optimizing water distribution time.
Show more [+] Less [-]Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review Full text
2021
Kali, Sundas | K̲h̲ān, Marīnah | Ghaffar, Muhammad Sheraz | Rasheed, Sajida | Waseem, Amir | Iqbal, Muhammad Mazhar | Bilal khan Niazi, Muhammad | Zafar, Mazhar Iqbal
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Show more [+] Less [-]Dissolved organic nitrogen in wastewater treatment processes: Transformation, biosynthesis and ecological impacts Full text
2021
Zheng, Fang | Wang, Jie | Xiao, Rui | Chai, Wenbo | Xing, Defeng | Lu, Huijie
With the upgrade of wastewater treatment plants (WWTPs) to meet more stringent discharge limits for nutrients, dissolved organic nitrogen (DON) is present at an increasing percentage (up to 85%) in the effluent. Discharged DON is of great environmental concern due to its potentials in stimulating algal growth and forming toxic nitrogenous disinfection by-products (N-DBPs). This article systematically reviewed the characteristics, transformation and ecological impacts of wastewater DON. Proteins, amino acids and humic substances are the abundant DON compounds, but a large fraction (nearly 50%) of DON remains uncharacterized. Biological treatment processes play a dominant role in DON transformation (65–90%), where DON serves as both nutrient and energy sources. Despite of the above progress, critical knowledge gaps remain in DON functional duality, relationship with dissolved inorganic nitrogen (DIN) species, and coupling/decoupling with the dissolved organic carbon (DOC) pool. Development of more rapid and accurate quantification methods, modeling transformation processes, and assessing DON-associated eutrophication and N-DBP formation risks should be given priority in further investigations.
Show more [+] Less [-]Deep-amplicon sequencing (DAS) analysis to determine the presence of pathogenic Helicobacter species in wastewater reused for irrigation Full text
2020
Hortelano, Irene | Moreno Koch, Yolanda | Moreno-Mesonero, Laura | Ferrús, María Antonia
Wastewater has become one of the most important and least expensive water for the agriculture sector, as well as an alternative to the overexploitation of water resources. However, inappropriate treatment before its reuse can result in a negative impact on the environment, such as the presence of pathogens. This poses an increased risk for environmental safety, which can subsequently lead to an increased risk for human health. Among all the emerging wastewater pathogens, bacteria of the genus Helicobacter are some of the most disturbing ones, since they are directly related to gastric illness and hepatobiliary and gastric cancer. Therefore, the aim of this study was to determine the presence of potentially pathogenic Helicobacter spp. in treated wastewater intended for irrigation. We used a next generation sequencing approach, based on Illumina sequencing in combination with culture and other molecular techniques (qPCR, FISH and DVC-FISH), to analyze 16 wastewater samples, with and without an enrichment step. By culture, one of the direct samples was positive for H. pylori. FISH and DVC-FISH techniques allowed for detecting viable Helicobacter spp., including H. pylori, in seven out of eight samples of wastewater from the tertiary effluents, while qPCR analysis yielded only three positive results. When wastewater microbiome was analyzed, Helicobacter genus was detected in 7 samples. The different molecular techniques used in the present study provided evidence, for the first time, of the presence of species belonging to the genus Helicobacter such as H. pylori, H. hepaticus, H. pullorum and H. suis in wastewater samples, even after disinfection treatment.
Show more [+] Less [-]A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement Full text
2020
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011–2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Show more [+] Less [-]Iron oxide-mediated photo-Fenton catalysis in the inactivation of enteric bacteria present in wastewater effluents at neutral pH Full text
2020
Fernández, L. | González-Rodríguez, J. | Gamallo, M. | Vargas-Osorio, Z. | Vázquez-Vázquez, C. | Piñeiro, Y. | Rivas, J. | Feijoo, G. | Moreira, M.T.
The pressure on natural water resources associated with increasing water scarcity highlights the value of using reclaimed water through the development of efficient and environmentally friendly treatment technologies. In this work, the use of magnetic nanoparticles in photo-Fenton catalysis for water disinfection was considered to inactivate natural enteric bacteria present in municipal wastewater effluents under white light and neutral pH. The most recommended ranges were evaluated in key variables such as the loading and composition of nanoparticles (NPs), hydrogen peroxide (H₂O₂) concentration, the light source (UV and visible) and treatment time were evaluated in wastewater disinfection expressed in terms of total coliforms and Escherichia coli colony forming units (CFU). The magnetic separation of NPs allowed the disinfection process to be carried out in different cycles, facilitating the recovery of the nanocatalyst and avoiding its discharge with the treated effluent.
Show more [+] Less [-]Impact of disinfectant on bacterial antibiotic resistance transfer between biofilm and tap water in a simulated distribution network Full text
2019
Zhang, Junpeng | Li, Weiying | Chen, Jiping | Wang, Feng | Qi, Wanqi | Li, Yue
Bacterial antibiotic resistance (BAR) is profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood. BAR of biofilm and tap water were analyzed by using a water distribution simulator where different doses of chlorine and chloramine were used in this study. The results revealed that the disinfectants (≥2 mg/L) suppressed antibiotic resistant bacteria (ARB) in tap water and biofilms, while disinfected water and biofilms had a high relative abundance of ARB. The difference of ARB concentration and ARB percentage between the samples obtained from a disinfected pipeline and a non-disinfected pipeline became smaller over time. Because the water supply system is a unidirectional process, it is unclear how planktonic bacteria in water transfer BAR over time, although biofilm is suspected to play a role in this process. Compared with the biofilm samples without disinfectant, the disinfected biofilm had lower ICC and HPC/ICC percentage, lower AOC and AOC/TOC percentage, indicating that the disinfectant inhibited the bacteria growth in biofilm, and the disinfected biofilm had high proportion of non-culturable bacteria and low biodegradability, which affected BAR in biofilms. High throughput sequencing showed that in biofilms, the relative abundance of genera (uncultured_f_Rhodocyclaceae, Brevundimonas, and Brevibacillus in chlorinated systems, and Brevundimonas, Brevibacillus in chloraminated systems) with multiple antibiotic resistance and high abundance (up to 78.5%), were positively associated with disinfectant concentration and ARB percentage. The major prevalent genera in biofilms were also detected in tap water, suggesting that biofilm growth or biofilm detachment caused by external environmental factors will allow the movement of biofilm clusters with higher ARB concentration and percentage into bulk water, thereby increasing the antibiotic resistance of bacteria in tap water.
Show more [+] Less [-]Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process Full text
2019
Zhang, Xiaoye | Tian, Yiping | Zhang, Xiaofang | Bai, Mindong | Zhang, Zhitao
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
Show more [+] Less [-]The effects of biodegradation on the characteristics and disinfection by-products formation of soluble microbial products chemical fractions Full text
2019
Wu, Meirou | Liang, Yongmei | Zhang, Yuguang | Xu, Haixing | Liu, Wei
Soluble microbial products (SMPs) discharged into rivers from sewage treatment plants may increase the health risk for downstream drinking water by acting as a precursor of DBPs. Biotransformation or biodegradation could alter the characteristics of SMPs and affect the subsequent formation of DBPs. This study observed the relative contribution of chemical fractions in SMPs and explored the biodegradation of each fraction and their effect on disinfection by-products (DBPs) formation in surface water. The hydrophilic acid (HPIA) and hydrophobic acid (HPOA) constituted the major portion of the SMPs, which were dominated by fulvic acid and humic acids. The transphilic acid (TPIA) and hydrophobic bases (HPOB) were relatively minor but it contained a relative substantial portion of protein-like materials in SMPs. TPIA and HPOB produced insignificant amounts of DBP corresponding to 13% and 14% in the original samples, but they were collectively responsible for 50% of the DBPs yield. Much larger amounts of hydrophobic fractions were utilized than hydrophilic fractions after biodegradation. The increase in SUVA values indicating aromatic structures, except for HPOA fraction, was observed after biodegradation. The protein-like materials in both the HPOA and HPIA fractions and polycarboxylate-type humic acid in the HPIA fraction decreased but the enrichment of HPOA (MW > 100 kDa) and TPIA (MW < 1 kDa) was observed after biodegradation. The production of = C–H in HPIA fraction and the appearance of double peak at 1100 cm⁻¹ in TPIA and HPOB fractions occurred after biodegradation. In overall level, microorganisms effectively utilized DBP precursors from HPIA, HPOA and HPOB fractions but increased the DBPs precursors from the TPIA fraction. TPIA and HPOB fractions had higher DBP yield with chlorine but the DBPs yield of HPIA and HPOA changed little after biodegradation.
Show more [+] Less [-]Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water Full text
2019
Wu, Pei-Hsun | Cheng, Yi-Ching | Chen, Haon-Yao | Chueh, Ti-wen | Chen, Hui-Chen | Huang, Li-Hsun | Wu, Zhong-Xian | Hsieh, Tsung-Min | Chang, Chao-Chin | Yang, Ping-Yi | Lin, Cheng-Fang | Yu, Chang-Ping
Control of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated. The results showed that the EBR system achieved higher than 81%, 35%, 12% and 46% of reduction in chlorophyll a (Chl a), total COD (TCOD), dissolved organic carbon (DOC) and total nitrogen (TN), respectively under varied influent concentrations. The treatment performance was not significantly influenced by HRT and presence/absence of physical pretreatment and the effluent water quality was stable; however, removal efficiencies and removal rates of Chl a, TCOD and DOC showed strong correlation with their influent concentrations. Excitation–emission matrix (EEM) fluorescence spectroscopy identified fulvic-like and humic-like substances as the two major components of dissolved organic matter (DOM) in the reservoir, and decreased intensity of the major peaks in effluent EEM fluorescence spectra suggested the effective removal of DOM without production of additional amount of soluble microbial products in the EBR. Through the treatment by EBR, about 10% of reduction of total trihalomethane formation potential for the effluent could also be achieved. Therefore, the overall results of this study demonstrate that EBR can be a potential pretreatment process for drinking water treatment plants receiving eutrophic source water.
Show more [+] Less [-]