Refine search
Results 1-10 of 25
Physiological and molecular responses of springtails exposed to phenanthrene and drought
2014
Holmstrup, Martin | Slotsbo, Stine | Schmidt, Stine N. | Mayer, Philipp | Damgaard, Christian | Sørensen, Jesper G.
Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.
Show more [+] Less [-]Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi
2022
Naseer, Minha | Zhu, Ying | Li, Fengmin | Yang, Yu-Miao | Wang, Song | Xiong, You-Cai
Arbuscular mycorrhizal fungi display desired potential to boost crop productivity and drought acclimation. Yet, whether nanoparticles can be incorporated into arbuscular mycorrhizal fungi for better improvement and its relevant morphologic and anatomical evidences are little documented. Pot culture experiment on wheat (Triticum aestivum L.) was conducted under drought stress (30% FWC) as well as well watered conditions (80% FWC) that involved priming of wheat seeds with iron nanoparticles at different concentrations (5mg L⁻¹, 10 mg L⁻¹ and 15 mg L⁻¹) with and without the inoculation of Glomus intraradices. The effects of treatments were observed on morphological and physiological parameters across jointing, anthesis and maturity stage. Root colonization and nanoparticle uptake trend by seeds and roots was also recorded. We observed strikingly high enhancement in biomass up to 109% under drought and 71% under well-watered conditions, and grain yield increased to 163% under drought and 60% under well-watered conditions. Iron nanoparticles at 10 mg L⁻¹ when combined with Glomus intraradices resulted in maximum wheat growth and yield, which mechanically resulted from higher rhizosphere colonization level, water use efficiency and photosynthetic rate under drought stress (P < 0.01). Across growth stages, optical micrograph observations affirmed higher root infection rate when combined with nanoparticles. Transmission electron microscopy indicated the penetration of nanoparticles into the seeds and translocation across roots whereas energy dispersive X-ray analyses further confirmed the presence of Fe in these organs. Iron nanoparticles significantly enhanced the growth-promoting and drought-tolerant effects of Glomus intraradices on wheat.
Show more [+] Less [-]Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec
2018
Gourdji, Shannon
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O3) as well as nitrogen dioxide (NO2) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus ‘Nana’, Pinus mugho var. pumilio, Pinus mugho ‘Slowmound’ and Pinus pumila ‘Dwarf Blue’ are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum ‘Shaina’ and ‘Mikawa-Yatsubusa’ are options to reduce O3 levels. Magnolias are tolerant to NO2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia ‘Genie’ is a good option to remove NO2 in urban settings and to indirectly reduce O3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM10 of which 35.10 kg is PM2.5. The removal rates are 4.00 g/m2 and 1.52 g/m2 for PM10 and PM2.5, respectively. This paper provides insight to addressing air pollution through urban rooftop greening.
Show more [+] Less [-]A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas
2021
Corada, Karina | Woodward, Huw | Alaraj, Hiba | Collins, C Matilda | de Nazelle, Audrey
Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed.
Show more [+] Less [-]Evaluation of Furcraea foetida (L.)Haw. for phytoremediation of cadmium contaminated soils
2021
Ramana, Sivakoti | Tripathi, Awadhesh Kumar | Kumar, Ajay | Dey, Pradip | Saha, Jayanta Kumar | Patra, Ashok Kumar
In the present study, we evaluated Furcraea foetida for the phytoremediation of cadmium (Cd)-contaminated soils. We selected F. foetida because it is a drought-resistant plant, produces high biomass, and needs minimum maintenance. It belongs to the leaf fiber group of plants and therefore has economic importance. Since it is a non-edible crop, there is no danger of food chain contamination. Despite possessing these ideal characteristics, surprisingly, to date, the plant is underutilized for phytoremediation purposes. Therefore, to evaluate the phytoremediation potential of the plant, we exposed it to five levels of cadmium (0, 25, 50, 100, and 200 mg Cd kg⁻¹ soil) and studied its influence on growth, dry matter production, uptake, and translocation efficiency. The plant showed good tolerance to Cd 200 mg kg⁻¹ soil without exhibiting any visible toxicity symptoms. The metal mainly accumulated in the roots (233 μg g⁻¹dw), followed by leaf (51 μg g⁻¹ dw). The bioconcentration factor was > 1, but the translocation factor was < 1. The plant was not classified as a hyperaccumulator of Cd; however, because of its high uptake (897 μ g⁻¹ plant) and translocation efficiency (78%), we concluded that the plant could be utilized for phytoextraction of Cd from soils with low to moderately contaminated soils.
Show more [+] Less [-]Enhancement of exopolysaccharides production and reactive oxygen species level of Nostoc flagelliforme in response to dehydration
2021
Wu, Shijie | Yu, Kaiqiang | Li, Long | Wang, Lingxia | Liang, Wenyu
Nostoc flagelliforme is a remarkable drought-resistant terrestrial cyanobacterium whose exopolysaccharides (EPS) have been found to exert important physiological and ecological functions, and the EPS are known to improve soil physicochemical properties. In this study, we used physiological and molecular methods to investigate the influences of three moisture loss levels on EPS production and the antioxidant system in N. flagelliforme. The aim was to reveal the EPS production mechanism involved in the gene differential expression and antioxidant system of N. flagelliforme in response to drought. Our results showed that EPS contents increased by 13% and 22% after 6-h and 48-h dehydration (6HAD and 48HAD) compared with 4-h rehydration (4HAR), respectively. The same trends were also detected for most EPS synthesis genes, especially glycosyltransferases. Furthermore, the intracellular reactive oxygen species (ROS) levels in N. flagelliforme were generally higher at 6HAD and 48HAD than at 4HAR. Superoxide dismutase (SOD) and peroxidase (POD) activities were restricted in N. flagelliforme under 6HAD and 48HAD compared with 4HAR, but the opposite result was found in catalase (CAT) activity. These results provide a new foundation for understanding the mechanism of EPS accumulation in N. flagelliforme in response to drought.
Show more [+] Less [-]Investigating green roofs’ CO2 sequestration with cold- and drought-tolerant plants (a short- and long-term carbon footprint view)
2022
Seyedabadi, Mohammad Reza | Karrabi, Mohsen | Nabati, Jafar
In recent years, green roofs have become the subject of increasing interest because of their good aesthetic qualities, energy conservation, and ability to reduce thermal island effect and absorb greenhouse gases, especially carbon dioxide (CO₂). Given the typically significant carbon emission of construction activities, adding any extra component to a structure increases the amount of carbon to be released during the execution stage. This also applies to green roofs, which require more materials and more extensive construction activities than traditional roofs. However, plants of green roofs absorb substantial amounts of CO₂ during their lifetime, thus leaving both short- and long-term positive impacts on the building’s carbon footprint. This study investigated the short- and long-term effects of green roofs on carbon footprint, as compared to conventional roofs. For this investigation, the CO₂ uptake of eight plant species with suitable drought- and cold-resistant properties was measured by infrared gas analysis (IRGA), and the effect of green roof on the building’s carbon footprint was analyzed using the software Design Builder. The results showed that building a green roof instead of a traditional roof increases the carbon emission of the construction process by 4.6 kg/m² of roof area. Investigations showed that, under high light intensities (1500–2000 μmol/m² s), Sedum acre L. has the best performance in compensating the extra carbon emission imposed on the construction process (in 264 days only). Under low light intensities (1000–1500 μmol/m² s), Frankenia laevis showed the best increase in the amount of carbon uptake (2.27 kg/m² year).
Show more [+] Less [-]Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions
2022
Popek, Robert | Mahawar, Lovely | Shekhawat, Gyan Singh | Przybysz, Arkadiusz
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants’ response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Show more [+] Less [-]CH4 Emission in Response to Water-Saving and Drought-Resistance Rice (WDR) and Common Rice Varieties under Different Irrigation Managements
2016
Sun, Huifeng | Zhou, Sheng | Song, Xiangfu | Fu, Zishi | Chen, Guifa | Zhang, Jining
A shortage in available water resources for rice production makes the evaluation of rice yield and greenhouse gas emission in response to drought caused by water scarcity vital. Here, we examined three forms of irrigation management (normal amount [NA], 70 % of NA [NA 70 %], and 30 % of NA [NA30%]) and two rice varieties (Oryza sativa L. cv. Hanyou 8 and Oryza sativa L. cv. Huayou 14) to determine their effects on CH₄ emission and rice yield in two rice growing seasons. Hanyou 8 is a variety of water-saving and drought-resistance rice (WDR), while Huayou 14 is a common rice variety with no known adaptation to drought conditions. NA 70 % reduced CH₄ emission by 30.3–53.3 %, and NA 30 % further depressed CH₄ emission by 51.0–76.7 % relative to NA in both seasons. However, NA 70 % and NA 30 % significantly decreased rice yield by 6.3 % (P < 0.05) and 10.1 % (P < 0.01), respectively, for Huayou 14 when compared with NA in the relatively dry season. Conversely, no differences in rice yield among different irrigation managements were observed for Hanyou 8 in both seasons, suggesting that Hanyou 8 is more drought-resistant than Huayou 14 in terms of rice yield. The results suggest that, to meet the water scarcity, the use of rice varieties with water-saving and drought-resistant traits may minimize rice yield loss and mitigate CH₄ emission in the rice-cultivated regions of the world.
Show more [+] Less [-]Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
2022
Yasin, Mubashra | Ashfaq, Ahmad | Khaliq, Tasneem | Habib-ur-Rahman, Muhammad | Niaz, Salma | Gaiser, Thomas | Ghafoor, Iqra | Hassan, Hafiz Suboor ul | Qasim, Muhammad | Hoogenboom, Gerrit
Future climate scenarios are predicting considerable threats to sustainable maize production in arid and semi-arid regions. These adverse impacts can be minimized by adopting modern agricultural tools to assess and develop successful adaptation practices. A multi-model approach (climate and crop) was used to assess the impacts and uncertainties of climate change on maize crop. An extensive field study was conducted to explore the temporal thermal variations on maize hybrids grown at farmer’s fields for ten sowing dates during two consecutive growing years. Data about phenology, morphology, biomass development, and yield were recorded by adopting standard procedures and protocols. The CSM-CERES, APSIM, and CSM-IXIM-Maize models were calibrated and evaluated. Five GCMs among 29 were selected based on classification into different groups and uncertainty to predict climatic changes in the future. The results predicted that there would be a rise in temperature (1.57–3.29 °C) during the maize growing season in five General Circulation Models (GCMs) by using RCP 8.5 scenarios for the mid-century (2040–2069) as compared with the baseline (1980–2015). The CERES-Maize and APSIM-Maize model showed lower root mean square error values (2.78 and 5.41), higher d-index (0.85 and 0.87) along reliable R² (0.89 and 0.89), respectively for days to anthesis and maturity, while the CSM-IXIM-Maize model performed well for growth parameters (leaf area index, total dry matter) and yield with reasonably good statistical indices. The CSM-IXIM-Maize model performed well for all hybrids during both years whereas climate models, NorESM1-M and IPSL-CM5A-MR, showed less uncertain results for climate change impacts. Maize models along GCMs predicted a reduction in yield (8–55%) than baseline. Maize crop may face a high yield decline that could be overcome by modifying the sowing dates and fertilizer (fertigation) and heat and drought-tolerant hybrids.
Show more [+] Less [-]