Refine search
Results 1-6 of 6
New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium
2020
With the technological advances and economic development, the multiplicity and wide variety of applications of electrical and electronic equipment have increased, as well as the amount of end-of-life products (waste of electrical and electronic equipment, WEEE). Accompanying their increasing application, there is an increasing risk to aquatic ecosystems and inhabiting organisms. Among the most common elements present in WEEE are rare earth elements (REE) such as Dysprosium (Dy). The present study evaluated the metabolic and oxidative stress responses of mussels Mytilus galloprovincialis exposed to an increasing range of Dy concentrations, after a 28 days experimental period. The results obtained highlighted that Dy was responsible for mussel’s metabolic increase associated with glycogen expenditure, activation of antioxidant and biotransformation defences and cellular damage, with a clear loss of redox balance. Such effects may greatly impact mussel’s physiological functions, including reproduction capacity and growth, with implications for population conservation. Overall the present study pointed out the need for more research on the toxic impacts resulting from these emerging pollutants, especially towards marine and estuarine invertebrate species.
Show more [+] Less [-]Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
Show more [+] Less [-]Trace elements in hazardous mineral fibres
2016
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed.The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Show more [+] Less [-]Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae
2020
Costa, Marcelo | Henriques, Bruno | Pinto, João | Fabre, Elaine | Viana, Thainara | Ferreira, Nicole | Amaral, Joana | Vale, Carlos | Pinheiro-Torres, José | Pereira, Eduarda
Potentially toxic elements (PTEs) are of major concern due to their high persistence and toxicity. Recently, rare earth elements (REEs) concentration in aquatic ecosystems has been increasing due to their application in modern technologies. Thus, this work aimed to study, for the first time, the influence of REEs (lanthanum, cerium, praseodymium, neodymium, europium, gadolinium, terbium, dysprosium and yttrium) and of salinity (10 and 30) on the removal of PTEs (Cd, Cr, Cu, Hg, Ni and Pb) from contaminated waters by living macroalgae (Fucus spiralis, Fucus vesiculosus, Gracilaria sp., Osmundea pinnatifida, Ulva intestinalis and Ulva lactuca). Experiments ran for 168 h, with each macroalga exposed to saline water spiked with the six PTEs and with the six PTEs plus nine REEs (all at 1 μmol L⁻¹) at both salinities. Results showed that all species have high affinity with Hg (90–99% of removal), not being affected neither by salinity changes nor by the presence of other PTEs or REEs. Cd showed the lowest affinity to most macroalgae, with residual concentrations in water varying between 50 and 108 μg L⁻¹, while Pb removal always increased with salinity decline (up to 80% at salinity 10). REEs influence was clearer at salinity 30, and mainly for Pb. No substantial changes were observed in Ni and Hg sorption. For the remaining elements, the effect of REEs varied among algae species. Overall, the results highlight the role of marine macroalgae as living biofilters (particularly U. lactuca), capable of lowering the levels of top priority hazardous substances (particularly Hg) and other PTEs in water, even in the presence of the new emerging contaminants - REEs. Differences in removal efficiency between elements and macroalgae are explained by the contaminant chemistry in water and by macroalgae characteristics.
Show more [+] Less [-]Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis
2022
Lewis, Ainsely | Guéguen, Céline
The critical rare earth element dysprosium (Dy) is integral for sustainable technologies. What is concerning is that Dy is in imminent short supply and no current replacements yet exist, coupled with increasing environmental Dy levels influenced by anthropogenic activities. This study applies chemometric methods such as response surface methodology and artificial neural networks to predict low Dy removal levels using the biosorbent Euglena gracilis. A three-factor Box-Behnken experimental design was conducted with initial concentration (1 to 100 µg L⁻¹), contact time (30 to 180 min), and pH (3 to 8) as the three independent variables, and percentage removal and sorption capacity (q) as dependent variables. Using Dy percentage removal as response, for the worst and best conditions ranged from 0 to 92% respectively, with an average removal of 66 ± 4%. Using sorption capacity (q) as a different response variable, q varied from 0 to 93 µg/g with 27 ± 4 µg/g capacity as average. Maximum removal was 92% (q = 93 µg/g) was at pH 3, a contact time of 105 min and at a concentration of 100 µg/L. Using sorption capacity as the response variable for ANOVA, pH and metal concentrations were statistically significant factors, with lower pH and higher metal concentration having improved Dy removal, with a desirability near 1. Statistical tests such as analysis of variance, lack-of-fit, and coefficient of determination (R²) confirmed model validity. A 3–10-1 ANN network array was used to model experimental responses (q). RSM and ANN effectively modeled Dy biosorption. E. gracilis proved to be a cheap and effective biosorbent for Dy biosorption and has the potential to remediate acid mine drainage areas exhibiting low Dy concentrations.
Show more [+] Less [-]Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: isotherm, kinetic and thermodynamic studies
2019
Devi, Aparna Prabha | Mishra, Pravat Manjari
In this paper, we have used HDTMA-Br- and NaOH-treated bark powder of Mangifera indica as bio-sorbents for the removal of dysprosium (III) from its aqueous solution. The adsorption process was investigated at different experimental parameters such as contact time, temperature, pH, adsorbent dose, and initial metal concentration. The amount of chemically modified bark powder required was almost two times lesser than raw bark to get a higher percentage removal of the metal ion. The kinetics results revealed the adsorption process follows the nonlinear form a pseudo-second-order model. The negative values of Gibbs free energy change (∆G°) indicated the spontaneity of the adsorption process. The enthalpy change (∆H°) and entropy change (∆S°) of adsorption were 60.97 kJ/mol and 0.48 J/mol K, respectively signified it as an endothermic process. The maximum adsorption capacity was found to be 55.04 mg/g for sorption of Dy (III) on NaOH-treated bark powder and was better fitted to Langmuier model. It was confirmed to follow physisorption process and the activation energy of the system was found to be 41.07 kJ/mol. The possibility of adsorbent and adsorbate interactions were indicated by the FTIR and SEM/EDX analysis.
Show more [+] Less [-]