Refine search
Results 1-10 of 171
Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549 cells Full text
2019
Yuan, Shengwu | Han, Yingnan | Ma, Mei | Rao, Kaifeng | Wang, Zijian | Yang, Rong | Liu, Yihong | Zhou, Xiaohong
Aryl phosphorus-containing flame retardants (aryl-PFRs) have been frequently detected with increasingly used worldwide as one of alternatives for brominated flame retardants. However, information on their adverse effects on human health and ecosystem is insufficient, with limited study on their molecular mode of action in vitro. In this study, the cytotoxicity, DNA damage, mitochondrial impairment and the involved molecular mechanisms of certain frequently detectable aryl-PFRs, including 2-ethylhexyldiphenyl phosphate (EHDPP), methyl diphenyl phosphate (MDPP), bisphenol-A bis (diphenyl phosphate) (BDP), isodecyl diphenyl phosphate (IDPP), cresyl diphenyl phosphate (CDP) and the structurally similar and widely used organophosphorus pesticide chlorpyrifos (CPF), were evaluated in A549 cells using high-content screening (HCS) system. Aryl-PFRs showed different lethal concentration 50 (LC50) values ranging from 97.94 to 546.85 μM in A549 cells using CCK-8 assay. EHDPP, IDPP, CDP, MDPP and CPF demonstrated an ability to induce DNA damage, evidenced by increased DNA content and S phase-reducing cell cycle arrest effect using fluorophore dye cocktail assay. Additionally, the selected aryl-PFRs induced mitochondrial impairment by the increasing mitochondrial mass and decreasing mitochondrial membrane potential. Moreover, BDP, MDPP, and CDP, which contain short alkyl chains showed their potential oxidative stress with intracellular ROS and mitochondrial superoxide overproduction from an initially relatively low concentration. Additionally, based on the promotion of firefly luminescence in p53-transfected A549 cells, p53 activation was found to be involved in aryl-PFRs-induced DNA damage. Further real-time PCR results showed that all selected aryl-PFRs triggered p53/p21/gadd45β-, and p53/p21/mdm2-mediated cell cycle pathways, and the p53/bax mediated apoptosis pathway to induce DNA damage and cytotoxic effects. These results suggest that aryl-PFRs (e.g., BDP, MDPP, CDP) cause oxidative stress-mediated DNA damage and mitochondrial impairment, and p53-dependent pathway was involved in the aryl-PFRs-induced DNA damage and cell cycle arrest. In conclusion, this study improves the understanding of PFRs-induced adverse outcomes and the involved molecular mechanism.
Show more [+] Less [-]Fate, occurrence and potential adverse effects of antimicrobials used for treatment of tuberculosis in the aquatic environment in South Africa Full text
2019
Magwira, Cliff Abdul | Aneck-Hahn, Natalie | Taylor, M. B. (Maureen Beatrice)
The consumption of tonnes of anti-tubercular and other anti-microbial compounds for the control of the tuberculosis epidemic and other opportunistic diseases associated with human immunodeficiency virus presents tuberculosis-endemic countries such as South Africa, with a problem regarding the occurrence and fate of these compounds in the aquatic environment. The majority of these compounds are not readily degradable and could persist in the aquatic environment with potential detrimental effect on the aquatic microbiota ecosystem, development and dissemination of anti-microbial resistance as well as chronic toxicity in humans due to long-term exposure. This review summarises and discusses the occurrence, fate and potential adverse effects of the commonly administered anti-tubercular compounds in the aquatic environment in tuberculosis-endemic countries and South Africa in particular. It further attempts to identify information gaps in the literature regarding anti-tubercular compounds in the environment that needs further investigation so that their risk can be comprehensively assessed and impact mitigated.
Show more [+] Less [-]Suspended particles potentially enhance nitrous oxide (N2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence Full text
2019
Zhou, Yiwen | Xu, Xiaoguang | Han, Ruiming | Li, Lu | Feng, Yu | Yeerken, Senbati | Kang, Song | Wang, Qilin
Estuaries are considered hot spots for the production and emissions of nitrous oxide (N2O) and easily occur suspended particles (SPS), however, current understanding about the role of SPS in the N2O emissions from the oxic estuarine waters of lacustrine ecosystems is still limited. In this study, field investigations were performed in the estuaries of hypereutrophic Taihu Lake, and laboratory simulations were simultaneously conducted to ascertain the characteristics of N2O emissions with different SPS concentrations. The results showed that the N2O emission fluxes ranged from 9.75 to 118.38 μg m−2 h−1, indicating a high spatial heterogeneity for the N2O emissions from the estuaries of Taihu Lake. Although the dissolved oxygen (DO) concentrations were up to 7.85 mg L−1 in the estuarine waters, from where the N2O emissions fluxes were approximately three times that of the lake regions. Multiple regression model selected the total nitrogen (TN), SPS, and DO concentrations as the crucial factors influencing the N2O emission fluxes. Particularly for SPS, the simulation results showed that the N2O concentrations increased gradually with the increase in the SPS concentrations of an oxic water column containing 4 mg L−1 of NO3−-N, indicating that a high SPS concentration can accelerate the N2O emissions. It was related to the change of denitrifying bacteria population in the SPS, as evidenced by its significantly positive correlation with N2O emissions (p < 0.01). Our findings will draw attentions to the role of SPS playing in the N2O productions and emissions in eutrophic lakes, and its effect on nitrogen cycle should be considered in the future study.
Show more [+] Less [-]Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain) Full text
2019
Ruiz-Orejón, Luis F. | Mourre, Baptiste | Sardá, Rafael | Tintoré, Joaquín | Ramis-Pujol, Juan
Plastic pollution is widespread in all the oceans and seas, representing a significant threat to most of their ecosystems even in marine protected areas (MPAs). This study determines the floating plastic distribution in four different periods between 2014 and 2015 in the recently approved Menorca Channel MPA (Balearic Islands). Plastic debris were persistent during all sampling periods on the surface of the Channel, composed mainly by the microplastic sizes. Average particle abundances ranged from 138,293 items⋅km−2 in autumn to 347,793 items⋅km−2 during the spring, while weight densities varied from 458.15 g(DW)⋅km−2 in winter to 2016.67 g(DW)⋅km−2 in summer. Rigid plastics were the most frequent particles in all the periods analysed (from 89.40%-winter to 94.54%-spring). The high-resolution and particle distribution models corroborated that the oceanographic variability shapes different patterns of presence of plastics, and in particular the existence of areas with almost no plastics.
Show more [+] Less [-]Multi-factor identification and modelling analyses for managing large river algal blooms Full text
2019
Xia, Rui | Zhang, Yuan | Wang, Gangsheng | Zhang, Yongyong | Dou, Ming | Hou, Xikang | Qiao, Yunfeng | Wang, Qiang | Yang, Zhongwen
River algal blooms have become a newly emerging global environmental issue in recent decades. Compared with water eutrophication in lakes and reservoirs, algal blooms in large river systems can cause more severe consequences to watershed ecosystems at the watershed scale. However, reveal the causes of river algal blooms remains challenging in the interdisciplinary of hydrological-ecological-environmental research, due to its complex interaction mechanisms impacted by multiple factors. In addition, there were still considerable uncertainties on the characteristics, impacts, driving factors, as well as the applicable water system models for river algal blooms. In this paper, we reviewed existing literature to elaborate the definition and negative effects of river algal blooms. We analyzed sensitive factors including nutrient, hydrological and climatic elements. We also discussed the application of ecohydrological models under complicated hydrological conditions. Finally, we explored the essence of the river algal bloom by the interaction effects of physical and biogeochemical process impacted by of climate change and human activities. The model-data integration accounting for multi-factor effects was expected to provide scientific guidance for the prevent and control of algal blooms in large river systems.
Show more [+] Less [-]Oiling of the continental shelf and coastal marshes over eight years after the 2010 Deepwater Horizon oil spill Full text
2019
Turner, R Eugene | Rabalais, Nancy N. | Overton, Edward B. | Meyer, Buffy M. | McClenachan, Giovanna | Swenson, Erick M. | Besonen, Mark | Parsons, Michael L. | Zingre, Jeffrey
We measured the temporal and spatial trajectory of oiling from the April, 2010, Deepwater Horizon oil spill in water from Louisiana's continental shelf, the estuarine waters of Barataria Bay, and in coastal marsh sediments. The concentrations of 28 target alkanes and 43 target polycyclic aromatic hydrocarbons were determined in water samples collected on 10 offshore cruises, in 19 water samples collected monthly one km offshore at 13 inshore stations in 2010 and 2013, and in 16–60 surficial marsh sediment samples collected on each of 26 trips. The concentration of total aromatics in offshore waters peaked in late summer, 2010, at 100 times above the May, 2010 values, which were already slightly contaminated. There were no differences in surface or bottom water samples. The concentration of total aromatics declined at a rate of 73% y−1 to 1/1000th of the May 2010 values by summer 2016. The concentrations inside the estuary were proportional to those one km offshore, but were 10–30% lower. The oil concentrations in sediments were initially different at 1 and 10 m distance into the marsh, but became equal after 2 years. Thus, the distinction between oiled and unoiled sites became blurred, if not non-existent then, and oiling had spread over an area wider than was visible initially. The concentrations of oil in sediments were 100–1000 times above the May 2010 values, and dropped to 10 times higher after 8 years, thereafter, demonstrating a long-term contamination by oil or oil residues that will remain for decades. The chemical signature of the oil residues offshore compared to in the marsh reflects the more aerobic offshore conditions and water-soluble tendencies of the dissolved components, whereas the anaerobic marsh sediments will retain the heavier molecular components for a long time, and have a consequential effect on the ecosystems.
Show more [+] Less [-]The EU watch list compounds in the Ebro delta region: Assessment of sources, river transport, and seasonal variations Full text
2019
Gusmaroli, Lucia | Buttiglieri, Gianluigi | Petrović, M. (Mira)
The presence of xenobiotics in the aquatic environment has drawn scientific concern due to possible detrimental effects on the ecosystems. With EU Decision 2015/495, a first Watch list of compounds that could potentially represent a threat for the environment was created, with the objective of gathering high quality monitoring data and support their prioritization. Literature data are still very scarce and the presence of many of the compounds has not been investigated thoroughly. In this study, all the 17 compounds of the EU Watch list 2015/495 were monitored in 14 sampling locations, comprised of freshwater and, for the first time, wastewater. The study was carried out in the Ebro delta, in the north east of Spain, a representative and crucial area not only for its environmental and naturalistic significance, but also for Spain’s productivity, especially as regards rice agriculture. Results show that contamination originates both from wastewater treatment plants (WWTPs) and agricultural activities. High levels of pharmaceuticals were detected in wastewater, with azithromycin and diclofenac present at mean concentrations of 1.65 μg/L and 636 ng/L respectively. In freshwater samples, besides antibiotics and diclofenac, substantial contamination by pesticides was reported, with oxadiazon reaching up to 591 ng/L and imidacloprid being present in 93% of samples. Moreover, the study provided insight into the origin of the selected contaminants. The removal of the studied micropollutants in WWTPs was low to moderate. The assessment of risk quotients, calculated based on the available PNECs, demonstrated that the concentrations recorded for these compounds may pose a significant risk in most sampling sites.
Show more [+] Less [-]Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau Full text
2019
Shen, Hao | Dong, Shikui | Li, Shuai | Xiao, Jiannan | Han, Yuhui | Yang, Mingyue | Zhang, Jing | Gao, Xiaoxia | Xu, Yudan | Li, Yu | Zhi, Yangliu | Liu, Shiliang | Dong, Quanming | Zhou, Huakun | Yeomans, Jane C.
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha⁻¹year⁻¹ (CK), 8 kgNha⁻¹year⁻¹ (Low N), and 72 kg N ha⁻¹ year⁻¹ (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha⁻¹year⁻¹) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Show more [+] Less [-]Railroad derived nitrogen and heavy metal pollution does not affect nitrogen fixation associated with mosses and lichens at a tundra site in Northern Sweden Full text
2019
Goth, Astrid | Michelsen, Anders | Rousk, Kathrin
Traffic derived nitrogen (N) and heavy metal pollution is a well-known phenomenon, but little explored in otherwise pristine ecosystems such as subarctic tundra. Here, the main source of N input to the ecosystem is via N₂ fixation by moss- and lichen-associated bacteria. While inhibitory effects of N deposition on moss-associated N₂ fixation have been reported, we still lack understanding of the effects of traffic derived N and heavy metal deposition on this ecosystem function in an otherwise pristine setting. To test this, we established a distance gradient (0–1280 m) away from a metal pollution source -a railway transporting iron ore that passes through a subarctic birch forest. We assessed the effects of railway-derived pollution on N₂ fixation associated with two moss species Pleurozium schreberi, Hylocomium splendens and with the lichen Peltigera aphthosa. Deposition and availability of N and heavy metals (Fe, Cu, Zn, Pb) as well as the respective contents in moss, lichen and soil was assessed. While we found a steep gradient in metal concentration in moss, lichen and soil with distance away from the pollution source, N deposition did not change, and with that, we could not detect a distance gradient in moss- or lichen-associated N₂ fixation. Hence, our results indicate that N₂ fixing bacteria are either not inhibited by heavy metal deposition, or that they are protected within the moss carpet and lichen tissue.
Show more [+] Less [-]First polychlorinated biphenyls (PCBs) monitoring in seawater, surface sediments and marine fish communities of the Persian Gulf: Distribution, levels, congener profile and health risk assessment Full text
2019
Ranjbar Jafarabadi, Ali | Riyahi Bakhtiari, Alireza | Mitra, Soumita | Maisano, Maria | Cappello, Tiziana | Jadot, Catherine
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that, due to their high toxicity, lipophilic property and widespread dispersal in the global environment, present a danger for human health and ecological systems. Although the inventory and use of PCBs are extensively reported worldwide, the status of PCBs in Iran is still unknown. In this study, the concentrations of PCBs were determined in the environmental matrices and in five commercially important fish species from Larak coral Island, Persian Gulf, Iran, in winter and summer 2015. A positive correlation was found among PCBs levels and congeners profiles in seawater (0.97–3.10 ng L⁻¹), surface sediments (2.95–7.95 ng g⁻¹dw) and fish samples (7.20–90.19 ng g⁻¹dw), indicating fish as suitable bioindicator of environmental PCBs contamination. In all matrices, a high contribution of light and medium chlorinated congeners was detected in both seasons. In fish, the higher PCBs levels were found for both sexes in both seasons in liver and kidney than other tissues (skin, gonad, muscle) due to their high lipid content and PCBs lipophilicity. More importantly, the risks for human health associated with fish consumption were also evaluated, and it was found that all the toxicity indices measured for PCBs were within the World Health Organization (WHO) permissible limit of food consumption. However, it is highly recommended to inform the local population about potential risks attributable to dietary incorporation of locally caught fish, and establish a surveillance monitoring programme on PCBs in this region.
Show more [+] Less [-]