Refine search
Results 1-10 of 21
Watershed-scale assessment of oil palm cultivation impact on water quality and nutrient fluxes: A case study in Sumatra (Indonesia)
2015
Comte I. | Colin F. | Grünberger O. | Whalen J. | Widodo R.H. | Caliman J.P.
High fertilizer input is necessary to sustain high yields in oil palm agroecosystems, but it may endanger neighboring aquatic ecosystems when excess nutrients are transported to waterways. In this study, the hydrochemical dynamics of groundwater and streams under baseflow conditions were evaluated with bi-monthly measurements for 1 year on 16 watersheds. Hydrochemical measurements were related to the spatial distribution of soil and fertilization practices across a landscape of 100 km2, dominated by oil palm cultivation, in Central Sumatra, Indonesia. The low nutrient concentrations recorded in streams throughout the landscape indicated that the mature oil palm plantations in this study did not contribute to eutrophication of aquatic ecosystems. This was ascribed to high nutrient uptake by oil palm, a rational fertilizer program, and dilution of nutrient concentrations due to heavy rainfall in the study area. Soil type controlled dissolved inorganic N and total P fluxes, with greater losses of N and P from loamy-sand uplands than loamy lowlands. Organic fertilization helped to reduce nutrient fluxes compared to mineral fertilizers. However, when K inputs exceeded the oil palm requirement threshold, high K export occurred during periods when groundwater had a short residence time. For higher nutrient use efficiency in the long term, the field-scale fertilizer management should be complemented with a landscape-scale strategy of fertilizer applications that accounts for soil variability. (Résumé d'auteur)
Show more [+] Less [-]Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review
2021
Ong, Ee Shen | Rabbani, Alija Haydar | Habashy, Mahmoud M. | Abdeldayem, Omar M. | Al-Sakkari, Eslam G. | Rene, Eldon R.
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H₂/L-medium/h and 6 L-H₂/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Show more [+] Less [-]Impacts of coastal land use change in the wet tropics on nearshore coral reefs: Case studies from Papua New Guinea
2021
Turak, Emre | DeVantier, Lyndon | Szava-Kovats, Robert | Brodie, Jon
Logging and plantation agriculture are vital to economies and livelihoods in tropical nations, including Papua New Guinea. To meet global demand, hundreds of thousands of ha of diverse natural habitat have been logged, cleared and replaced with monoculture crops. Resulting hydrological changes have increased sediment, nutrient and pesticide runoff, impacting down-stream habitats. Here, case studies from Kimbe Bay (New Britain) and Mullins Harbour (Milne Bay), examine effects on nearshore coral reefs. In both places, logging and oil palm development had destabilized soils and removed or degraded riparian vegetation. Downstream, nearshore reefs had high silt levels, which, coincident with minor coral bleaching and predation by crown-of-thorns starfish, were correlated with high levels of coral mortality and low coral species richness. Sediment and related impacts can be reduced by effective catchment management, such as avoiding steep slopes, expanding stream and coastal buffer zones, minimizing fertilizer and pesticide use, monitoring and reactive management.
Show more [+] Less [-]Longitudinal trends of future climate change and oil palm growth: empirical evidence for tropical Africa
2021
Paterson, R. Russell M.
Palms are highly significant tropical plants. Oil palms produce palm oil, the basic commodity of a highly important industry. Climate change from greenhouse gasses is likely to decrease the ability of palms to survive, irrespective of them providing ecosystem services to communities. Little information about species survival in tropical regions under climate change is available and data on species migration under climate change is important. Palms are particularly significant in Africa: a palm oil industry already exists with Nigeria being the largest producer. Previous work using CLIMEX modelling indicated that Africa will have reduced suitable climate for oil palm in Africa. The current paper employs this modelling to assess how suitable climate for growing oil palm changed in Africa from current time to 2100. An increasing trend in suitable climate from west to east was observed indicating that refuges could be obtained along the African tropical belt. Most countries had reduced suitable climates but others had increased, with Uganda being particularly high. There may be a case for developing future oil palm plantations towards the east of Africa. The information may be usefully applied to other palms. However, it is crucial that any developments will fully adhere to environmental regulations. Future climate change will have severe consequences to oil palm cultivation but there may be scope for eastwards mitigation in Africa.
Show more [+] Less [-]Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies
2020
Melo, Larissa L. A. | Ide, Alessandra H. | Duarte, José Leandro S. | Zanta, Carmem Lucia P. S. | Oliveira, Leonardo M. T. M. | Pimentel, Wagner R. O. | Meili, Lucas
The palm (Elaeis guineensis), known as dendê, is an important oleaginous Brazilian plant with a high performance of oil production. In this work, a 2³ full experimental design was performed and the response surface method (RSM) was used to indicate the optimum parameter of caffeine adsorption on Elaeis guineensis endocarp activated carbon, since the endocarp is the main by-product from dendê oil production. It was set the adsorbent point of zero charge (pHₚzc), and the material was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The RSM results indicate removal efficiency (%) at the optimal conditions, 0.20 g of adsorbent, and caffeine initial concentration of 20 mg/L, and acidic medium was about 95%. Based on ANOVA and F test (Fcₐₗcᵤₗₐₜₑd > Fₛₜₐₙdₐᵣd), the mathematical/statistical model obtained fits well to the experimental data. The overall kinetic studies showed time was achieved after 5 h and caffeine adsorption followed the pseudo-second-order model suggesting chemisorption is a predominant mechanism. Redlich-Peterson and Sips models best represented the experimental data (0.967 < R² < 0.993). Thermodynamic revealed that caffeine adsorption was spontaneous at all temperatures studied, exothermic, and probably with changes in the adsorbate-adsorbent complex during the process. The tests conducted in different water matrixes corroborate the suitability of this adsorbent to be used in caffeine removal even in a complex solution.
Show more [+] Less [-]Enhancement of sonocatalytic degradation of organic dye by using titanium dioxide (TiO2)/activated carbon (AC) derived from oil palm empty fruit bunch
2020
Pang, Yean Ling | Lim, Steven | Lee, Raymond Kuok Liang
A novel titanium dioxide/activated carbon (TiO₂/AC) composite where AC derived from oil palm empty fruit bunch (EFB) was synthesised by using sol–gel method. All the samples were characterised by using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), Fourier transformed infrared (FTIR), thermogravimetric analysis (TGA) and surface analyser. SEM analysis showed that TiO₂ particles were successfully embedded and well distributed on the AC surface. The elemental composition analysis found that the TiO₂/AC composite contained titanium (Ti), oxygen (O) and carbon (C) atoms. Meanwhile, the appearance of new band at about 960 cm⁻¹ which assigned to the Ti–O stretching was observed in the FTIR spectra when the AC was incorporated into TiO₂. TGA analysis showed that the weight loss of 32 wt.% from 150 to 550 °C was due to the decomposition of amorphous carbon layers and loss of hydroxyl groups on TiO₂. It was found that the TiO₂/AC composite had better performance in the sonocatalytic degradation of malachite green as compared to the individual AC and TiO₂ because the TiO₂/AC composite had dual functionality and huge number of active sites which could promote the mass transfer of dye molecules towards catalyst surface. By using 1.5 g/L of TiO₂/AC composite which calcined at 700 °C on 100 mL of 200 mg/L of malachite green at solution pH of 7, a degradation efficiency of 87.11% had been achieved after 30 min of ultrasonic irradiation. A lower chemical oxygen demand (COD) removal (81.75%) was observed because the structured dye molecules underwent mineralisation process during the sonocatalytic degradation to generate intermediate compounds. The TiO₂/AC composite was able to be recycled and still achieved a high degradation efficiency of 76.78% after second catalytic cycle as compared to the fresh TiO₂/AC composite with degradation efficiency of 87.11%. In conclusion, the TiO₂/AC composite had high reusability and promising for practical applications in textile industry.
Show more [+] Less [-]Simultaneous Dephenolization and Decolorization of Treated Palm Oil Mill Effluent by Oil Palm Fiber-Immobilized Trametes Hirsuta Strain AK 04
2015
Kietkwanboot, Anukool | Tran, Hanh Thi My | Suttinun, Oramas
The phenolics and high organic content present in palm oil mill effluent are the major contributors to its dark brown color, toxicity, and antimicrobial properties. In this study, ten white rot fungi were screened for their potential in the dephenolization and decolorization of treated palm oil mill effluent (TPOME) in solid and liquid state cultures. Among them, Trametes hirsuta strain AK 04 was found to be more tolerant to high TPOME concentrations and showed the highest phenolics and color removal activities. This strain was immobilized onto oil palm fibers (OPFs) and appeared more resistant to inhibitory compounds such as phenolics in TPOME than the free cell culture. The OPF-immobilized fungus was able to effectively remove phenolics and color of TPOME without effluent dilution and addition of nutrients. The activities of laccase and manganese peroxidase were found during dephenolization and decolorization processes. Moreover, the degradation rate of immobilized fungus could be accelerated by pretreatment of phenolics with phenol-degrading bacteria. This method improved the fungal dephenolization and decolorization simultaneously up to 82.2 ± 3.8 % and 87.1 ± 1.1 % after 8 days of incubation. Therefore, a two-stage biological process containing phenol-degrading bacteria and OPF-immobilized fungus could be a feasible and economical method for simultaneous improvement of dephenolization and decolorization of TPOME.
Show more [+] Less [-]Removal of Bisphenol A from Aqueous Solution by Activated Carbon Derived from Oil Palm Empty Fruit Bunch
2014
Wirasnita, Riry | Hadibarata, Tony | Yusoff, Abdull Rahim Mohd | Yusop, Zulkifli
The potential of the activated carbon prepared from the empty fruit bunch of oil palm wastes to remove bisphenol A (BPA) from aqueous media was investigated. The experiments were performed by varying the contact time, activated carbon dose, initial BPA concentration, and pH of the solution. The Langmuir, Freundlich, and Temkin isotherm models were employed to discuss the adsorption behavior. The equilibrium data were perfectly represented by the Langmuir isotherm with R²of 0.9985. The maximum monolayer adsorption capacity of the activated carbon was found to be 41.98 mg/g. Kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic with a rate constant of 0.3 × 10⁻³/min. The activated carbon was characterized by means of Fourier transform infrared spectrometry, Brunauer–Emmett–Teller, and field emission scanning electron microscopy analyses. The results of the present study indicate that the activated carbon prepared from the empty fruit bunch is a promising candidate as a low-cost bio-adsorbent for the removal of BPA from aqueous solution.
Show more [+] Less [-]Dephenolization of palm oil mill effluent by oil palm fiber-immobilized Trametes hirsuta AK04 in temporary immersion bioreactor for the enhancement of biogas production
2022
Kietkwanboot, Anukool | Chaiprapat, Sumate | Müller, Rudolf | Suttinun, Oramas
The dephenolization of palm oil mill effluent (POME) with oil palm fiber-immobilized Trametes hirsuta AK 04 was conducted in a temporary immersion bioreactor to reduce the inhibitory effects of phenolics in anaerobic digestion. Longer immersion times provided greater removal of phenolics due to a higher release of manganese peroxidase. The most effective dephenolization was observed at 6 h immersed and 2 h non-immersed time (immersion ratio 6/8) with maximum removal of 85% from 1277 mg L⁻¹ of phenolics in 4 days. The immobilized fungus maintained its high activity during multiple repeated batch treatments. The pretreated POME of 2 h showed higher methane yields compared with the untreated POME substrate. The methane yields increased with increasing pretreatment time and dephenolization levels. The results suggested that an increased abundance of methanogens was associated with the detoxification of phenolics. The fungal biomass contained crude protein, amino acids, and essential phenolics, which can be used as animal feed supplements.
Show more [+] Less [-]Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition
2021
Drewer, Julia | Leduning, Melissa M. | Purser, Gemma | Cash, James M. | Justin Sentian, | Skiba, Ute M.
Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, β-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5–3.5 μg C m⁻² h⁻¹ from the forest floor with occasional fluxes exceeding 100 μg C m⁻² h⁻¹. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5–2.9 μg C m⁻² h⁻¹) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.
Show more [+] Less [-]