Refine search
Results 1-10 of 40
Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field Full text
2022
Wang, Yuchen | Li, Ang | Ren, Binqiao | Han, Zijian | Lin, Junhao | Zhang, Qiwei | Cao, Tingting | Cui, Chongwei
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb²⁺, Cu²⁺, Zn²⁺). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu²⁺ and Zn²⁺ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb²⁺ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb²⁺ ions could form a more stable coordination sphere in metal complexes than Cu²⁺ and Zn²⁺ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Show more [+] Less [-]Remediation of resins-contaminated soil by the combination of electrokinetic and bioremediation processes Full text
2020
Ma, Jing | Zhang, Qi | Chen, Fu | Zhu, Qianlin | Wang, Yifei | Liu, Gangjun
In this work, soil contaminated by petroleum resins was remediated by electrokinetic-bioremediation (EK-BIO) technology for 60 days. A microbial consortium, comprising Rhizobium sp., Arthrobacter globiformis, Clavibacter xyli, Curtobacterium flaccumfaciens, Bacillus subtilis, Pseudomonas aeruginosa and Bacillus sp., was used to enhance the treatment performance. The results indicate that resin removal and phytotoxicity reduction were highest in the inoculated EK process, wherein 23.6% resins was removed from the soil and wheat seed germination ratio was increased from 47% to around 90% after treatment. The microbial counts, soil basal respiration and dehydrogenase activity were positively related to resins degradation, and they could be enhanced by direct current electric field. After remediation, the C/H ratio of resins decreased from 8.03 to 6.47. Furthermore, the structure of resins was analyzed by Fourier-transform infrared spectroscopy, elemental analysis, and ¹H nuclear magnetic resonance (¹H NMR) before and after treatment. It was found that the changes of the structure of resins took place during EK-BIO treatment and finally led to the reduction of aromaticity, aromaticity condensation and phytotoxicity.
Show more [+] Less [-]Electro/magnetic superposition effects on diclofenac degradation: Removal performance, kinetics, community structure and synergistic mechanism Full text
2022
Feng, Yan | Li, Zichen | Long, Yingying | Suo, Ning | Wang, Zhongwei | Qiu, Lipin
Electric and magnetic fields characterized by high efficiency, low consumption and environment-friendly performance have recently generated interest as a possible measure to enhance the performance of the biological treatment process used to remove refractory organics. Few studies have been carried out to-date regarding the simultaneous application of electric and magnetic fields on biofilm process to degrade diclofenac. In this study, 3DEM-BAF was designed to evaluate the electrio-magnetic superposition effect on diclofenac removal performance, kinetics, community structure and synergistic mechanism. The results show that 3DEM-BAF could significantly increase the average removal rate of diclofenac by 65.30 %, 57.46 %, 9.48 % as compared with that of BAF, 3DM-BAF, 3DE-BAF, respectively. The diclofenac degradation kinetic constants and dehydrogenase activity of 3DEM-BAF were almost 6.72 and 2.53 times higher than those of BAF. Microorganisms of 3DEM-BAF in the Methylophilus and Methyloversatilis genera were distinctively enriched, which was attributed to the screening function of electric field and propagation effect of magnetic field. Moreover, three processes were found to contribute to diclofenac degradation, namely electro-magnetic-adsorption, electro-chemical oxidation and electro-magnetic-biodegradation. Thus, the simultaneous application of electric and magnetic fields on biofilm process was demonstrated to be a promising technique as well as a viable alternative in diclofenac degradation enhancement.
Show more [+] Less [-]Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents Full text
2021
Wang, Yuchen | Han, Zijian | Li, Ang | Cui, Chongwei
In this study, an electrokinetic technique for remediation of Pb²⁺, Zn²⁺ and Cu²⁺ contaminated soil was explored using sodium alginate (SA) and chitosan (CTS) as promising biodegradable complexing agents. The highest Cu²⁺ (95.69%) and Zn²⁺ (95.05%) removal rates were obtained at a 2 wt% SA dosage, which demonstrated that SA significantly improved the Cu²⁺ and Zn²⁺ removal efficiency during electrokinetic process. The abundant functional groups of SA allowed metal ions desorption from soil via ion-exchange, complexation, and electrolysis. Pb²⁺ ions were difficult to remove from soil by SA due to the higher gelation affinity with Pb²⁺ than Cu²⁺ and Zn²⁺, despite the Pb²⁺ exchangeable fraction partially transforming to the reducible and oxidizable fractions. CTS could complex metal ions and migrate into the catholyte under the electric field to form crosslinked CTS gelations. Consequently, this study proved the suitability of biodegradable complexing agents for treating soil contaminated with heavy metals using electrokinetic remediation.
Show more [+] Less [-]Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter Full text
2019
Liu, Yanbiao | Liu, Fuqiang | Qi, Zenglu | Shen, Chensi | Li, Fang | Ma, Chunyan | Huang, Manhong | Wang, Zhiwei | Li, Junjing
One of the topics gaining lots of recent attention is the antimony (Sb) pollution. We have designed a dual-functional electroactive filter consisting of one-dimensional (1-D) titanate nanowires and carbon nanotubes for simultaneous oxidation and sorption of Sb(III). Applying an external limited DC voltage assist the in-situ conversion of highly toxic Sb(III) to less toxic Sb(V). The Sb(III) removal kinetics and efficiency were enhanced with flow rate and applied voltage (e.g., the Sb(III) removal efficiency increased from 87.5% at 0 V to 96.2% at 2 V). This enhancement in kinetics and efficiency are originated from the flow-through design, more exposed sorption sites, electrochemical reactivity, and limited pore size on the filter. The titanate-CNT hybrid filters perform effectively across a wide pH range of 3–11. Only negligible inhibition was observed in the presence of nitrate, chloride, and carbonate at varying concentrations. Our analyses using STEM, XPS, or AFS demonstrate that Sb were mainly adsorbed by Ti. DFT calculations suggest that the Sb(III) oxidation kinetics can be accelerated by the applied electric field. Exhausted titanate-CNT filters can be effectively regenerated by using NaOH solution. Moreover, the Sb(III)-spiked tap water generated ∼2400 bed volumes with a >90% removal efficiency. This study provides new insights for rational design of continuous-flow filters for the decontamination of Sb and other similar heavy metal ions.
Show more [+] Less [-]Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination Full text
2018
Wan, Hui | Yi, Xiaoyun | Liu, Xiaoping | Feng, Chunhua | Dang, Zhi | Wei, Chaohai
Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (−0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120.
Show more [+] Less [-]Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation Full text
2016
Yu, Hui | Feng, Chunhua | Liu, Xiaoping | Yi, Xiaoyun | Ren, Yuan | Wei, Chaohai
The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg⁻¹, while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation.
Show more [+] Less [-]Improvement of water resistance by Fe2O3/TiO2 photoelectrocatalysts for formaldehyde removal: experimental and theoretical investigation Full text
2022
Dong, Jing | Li, Qing | Xia, Wenjie | Lv, Bihong | Jing, Guohua | Shen, Huazhen | Yuan, Chung-shin
TiO₂-based photocatalysts are a potential technology for removing indoor formaldehyde (CHOH) owing to their strong photooxidation ability. However, their photooxidation performance is generally weakened when suffering from the competitive adsorption of H₂O. In a method inspired by the oxygen evolution reaction (OER) to generate intermediates with hydroxyl radicals on the anode electrode catalysts, an electric field was employed in this research and applied to the photooxidation of CHOH to prevent the competitive adsorption of H₂O. Additionally, 0.5–5% Fe₂O₃ decorated TiO₂ was employed to improve the photoelectrocatalytic activity. The influence of an electric field on hydroxyl-radical production was investigated by both density functional theory (DFT) with direct-imposed dipole momentum and photoelectrocatalytic experimental tests. The surface characterization of the photocatalysts, including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR), was conducted. DFT results show that a positive electric field with a strength of 0.05 Å/V was more favorable to produce hydroxyl on Fe₂O₃/TiO₂(010) than was a negative electric field. Fe₂O₃ decoration can significantly boost hydroxyl formation, resulting from a decrease in the binding energy between the Fe of Fe₂O₃ and the oxygen and hydrogen atoms of H₂O. The dissociated hydrogen atom of the H₂O preferentially remained on the catalysts’ surface rather than being released into the gas flow. The experimental results demonstrated that applying 150 V could not directly enhance the photooxidation of CHOH by either TiO₂ or Fe₂O₃/TiO₂ but that it could relieve the H₂O inhibitory effect by more than 10% on the Fe₂O₃/TiO₂.
Show more [+] Less [-]The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine Full text
2021
Iazdani, Fereshteh | Nezamzadeh-Ejhieh, Alireza
Aniline and its derivate are critical environmental pollutants, and thus, the introduction of an eco-friendly catalyst for removing them is an important research future. The ZnO supported on the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion-exchange process followed by the calcination process. The amount of loaded ZnO in the ZnO-CNP (CZ) samples varied as 0.54, 0.63, 0.72, and 0.86 meq/g as the Zn(II) concentration in the ion-exchange solution varied from 0.1 to 0.5 M. The ZnO-CNP catalyst was briefly characterized by XRD, FTIR, and DRS techniques. The pHpzc value for the various ZnO-CNPs was about 7.1 that had no change with the ZnO loading. By applying the Scherrer equation on the XRD results, a nano-dimension of about 50 nm was obtained for the catalyst. Bandgap energy of the ZnO-CNP samples was estimated by applying the Kubelka-Munk equation on the DRS reflectance spectra. The value for the CZ2 catalyst was about 3.64 eV. The supported ZnO-CNP sample was then used in the photodegradation of 2,4-dichloroaniline (DCA). Raw zeolite showed a relatively low photocatalytic activity. The degradation efficiency was followed by recording the absorbance of the DCA solution by UV-Vis spectrophotometer. The effects of the essential critical operating factors on the degradation efficiency were kinetically studied by applying the Hinshelwood equation to the results. The ZnO-CNP catalyst with 2 w% ZnO showed the best photocatalytic rate in the optimal conditions of 0.75 g/L, CDCA: 15 ppm, and the initial pH: 5.8. Finally, HPLC analysis of the blank and the photodegraded DCA solutions at 180 and 300 min confirmed 74 and 87% of DCA molecules were degraded during these times. The results confirm that supported ZnO onto clinoptilolite caused enhanced photocatalytic activity because the zeolite internal electrical field prevents the e⁻/h⁺ recombination.
Show more [+] Less [-]Efficacy of Electrokinetics in Remediating Soft Clay Slurries Contaminated with Cadmium and Copper Full text
2021
Hassan, Ikrema | Mohamedelhassan, Eltayeb
This study was carried out to investigate the efficacy of electrokinetics to remediate two identical soft kaolinite clay slurries with a water content of 70%. The first slurry was contaminated with copper at a concentration of 150 mg/kg of dry soil and the second with cadmium at the same concentration. The tests were performed in four identical electrokinetic columns (two for the electrokinetics tests and two for control) with a volume capacity of 14 L. An electric field intensity of 140 V/m was applied during 118 h of remediation with the top electrode serving as the anode (+ ve) and the bottom electrode acting as the cathode (− ve). The results showed that electrokinetics removed 2070 mL of water from the soil with copper contamination (compared to only 693 mL in the control test) and 1828 mL of water from the soils with cadmium contamination (compared to 839 mL in the control test). Electrokinetics was successful in removing significant portion of the copper and cadmium from most of the contaminated soil with the highest removal in copper (67%) and in cadmium (89%) in the soil sections near the anode. Electrokinetics was more effective in mobilizing the cadmium in the clay soil as compared to copper. Energy consumption determination revealed that electrokinetic remediation was successful in the removal of copper and cadmium from the section near the anode at rates of 77 and 100 mg/kg per kWh, respectively.
Show more [+] Less [-]