Refine search
Results 1-10 of 30
Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Show more [+] Less [-]Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells
2019
Kim, Nahyun | Han, Doo Hee | Suh, Myung-Whan | Lee, Jun-Ho | Oh, Seung-Ha | Park, Moo Kyun
Tight junctions (TJs) in the epithelium play a critical role in the formation of a paracellular epithelial barrier against the extracellular environment. Diesel exhaust particles (DEPs) disrupt the epithelial barrier. The aim of this study was to investigate how DEPs disrupt the epithelial barrier and whether Toll-like receptor 4 (TLR4) is involved in DEP-induced epithelial barrier dysfunction in primary human nasal epithelial (PHNE) cells.PHNE cells were cultured at an air–liquid interface (ALI) to create a fully differentiated in vivo-like model of the epithelium and then exposed to DEPs (particulate matter <4 μm) or lipopolysaccharide (LPS) alone (mono-exposure) and DEPs plus LPS (co-exposure) at the apical side of the PHNE. TJ formation and integrity were monitored by measuring transepithelial electric resistance (TEER) and fluorescently labeled dextran permeability. The expression of TJ proteins was assessed by confocal microscopy and a biochemical assay.PHNE cell viability was reduced in a time- and dose-dependent manner following DEP exposure. TEER was significantly decreased at ALI day 20 but not at day 12 following DEP exposure. The dextran permeability of the PHNE was significantly increased at both ALI day 12 and day 20 following DEP exposure. The increased dextran permeability recovered to that of the control following co-exposure to DEPs plus LPS. In the presence of DEPs, the membrane expression of myosin light chain kinase (MLCK) was dramatically increased, and the expression of occludin, ZO1, claudin-1, and E-cadherin was significantly decreased. Co-exposure to DEPs plus LPS significantly reduced membrane MLCK, claudin-1, and E-cadherin but increased occludin and ZO1 expression at ALI day 12.The activation of TLR4 by LPS inhibits MLCK trafficking to the plasma membrane, and this increased during DEP exposure, resulting in increased occludin expression at the plasma membrane that partially recovered TJ barrier dysfunction following DEP exposure.
Show more [+] Less [-]Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India
2021
Surinaidu, L. | Nandan, M.J. | Sahadevan, D.K. | Umamaheswari, A. | Tiwari, V.M.
Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources. However, these techniques may lead to ambiguous results and fail to identify the seepage sources, especially when the area is urbanized/paved, and groundwater is already contaminated with other leakage sources that have similar chemical compounds. In the present study, a novel and multidisciplinary approach were adopted that includes satellite-based Land Surface Temperature (LST) observations, field-based Electrical Resistivity Tomography (ERT), continuous Soil Electrical Conductivity (SEC) and Volumetric Soil Moisture (VSM%) measurements along with groundwater levels monitoring to identify the sources and to control the seepage. The integrated results identified that the locations with the Standard Thermal Anomaly (STA) in the range of −0.5 to -1 °C, VSM% >50%, SEC > 1.5 mS/cm, bulk resistivity < 12 Ω m with shallow groundwater levels < 3 m below ground level (bgl) are potentially contaminated perennial seepage sources. Impermeable sheet piles have been installed across the groundwater flow direction to control the seepage up to 1.5 m bgl, where groundwater frequently intercepts land surface. The quantity of dry season groundwater seepage has been declined by 79.2% after these interventions, which in turn minimized the treatment cost of 1,96,283 USD/year and improved the downstream ecosystem.
Show more [+] Less [-]Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation
2020
Wang, Gang | Han, Neng | Liu, Li | Ke, Zhengchen | Li, Baoguo | Chen, Guowei
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 10⁶ electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
Show more [+] Less [-]OTA induces intestinal epithelial barrier dysfunction and tight junction disruption in IPEC-J2 cells through ROS/Ca2+-mediated MLCK activation
2018
Wang, Hong | Zhai, Nianhui | Chen, Ying | Fu, Chongyang | Huang, Kehe
Ochratoxin A (OTA) is a frequent contaminant of feed and food worldwide. The toxicity of OTA on intestinal barrier was investigated in porcine intestinal epithelial cells (IPEC-J2). We observed that OTA induced intestinal barrier dysfunction as indicated by the reduction in transepithelial electrical resistance (TEER) and elevation in paracellular permeability to 4 kDa dextran. The barrier dysfunction was accompanied with tight junction disruption including a down-regulation in ZO-1 expression and redistribution of Occludin and ZO-1. Moreover, OTA exposure increased reactive oxygen species (ROS) generation, elevated the intracellular calcium level ([Ca²⁺]c) and activated myosin light chain kinase (MLCK). Simultaneously, NAC, a ROS scavenger, blocked OTA-induced ROS generation, [Ca²⁺]c elevation, barrier dysfunction and tight junction disruption, suggesting that OTA-induced ROS generation may act as a trigger. Next, we found that OTA-induced MLCK activation was inhibited by BAPTA-AM, the cytosolic Ca²⁺ chelator, demonstrating that OTA-induced MLCK activation is dependent on [Ca²⁺]c elevation. Furthermore, inhibition of MLCK with ML-7 or inhibition of [Ca²⁺]c elevation with BAPTA-AM markedly prevented OTA-induced barrier dysfunction and tight junction disruption. Taken together, our results indicated that OTA induces ROS generation, and then elevates the [Ca²⁺]c and MLCK activity in turn, which finally induces barrier dysfunction and disrupts tight junction in IPEC-J2 cell monolayers.
Show more [+] Less [-]Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines
2011
Senal, Maria Isabel S. | Jacinto, Gil S. | San Diego-McGlone, Maria Lourdes | Siringan, Fernando | Zamora, Peter | Soria, Lea | Cardenas, M Bayani | Villanoy, Cesar | Cabrera, Olivia
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, ²²²Rn, and nutrient concentration measurements. Nitrate levels as high as 126μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN=NO₃+NO₂+NH₄) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2mmolesm⁻²d⁻¹, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.
Show more [+] Less [-]Pulmonary toxicity of actual alveolar deposition concentrations of ultrafine particulate matters in human normal bronchial epithelial cell
2021
Lin, Chia-Hua | Lung, Shih-Chun Candice | Chen, Yi-Chun | Wang, Lung-Chun
Air pollution is a major worldwide concern, and exposure to particulate matter (PM) can increase the risks of pulmonary diseases. Normal human bronchial epithelial cells were applied to clarify the role of ultrafine PM (UFPM) in the pathogenesis of pulmonary toxic effects with realistic alveolar deposition doses. The UFPM used in this research originated from vehicular emissions and coal combustion. UFPM exposure of up to 72 h was found to induce significant time- and concentration-dependent decreases in cell viability. Exposure to UFPM increased reactive oxygen species (ROS) accumulation through heme oxygenase-1 (HO-1) inhibition and induced massive oxidative stress that increased the interleukin-8 (IL-8) expression. UFPM also reduced the pulmonary trans-epithelial electrical resistance through the depletion of zonula occludens (ZO) proteins. Finally, UFPM decreased the α1-antitrypsin (A1AT) expression, which implies high risk of chronic obstructive pulmonary disease (COPD). The evidence demonstrates that exposure to UFPM, even at very low concentrations, may affect the functions of the respiratory system.
Show more [+] Less [-]Integrated Hydrological and Geophysical Characterisation of Surface and Subsurface Water Contamination at Abandoned Metal Mines
2018
Hudson, Emily | Kulessa, Bernd | Edwards, Paul | Williams, Tom | Walsh, Rory
The mining and processing of metal ores in the UK has left a legacy of environmental degradation, and abandoned metal mines still pose a significant threat to terrestrial and fluvial environments. Flow gauging, water quality and geophysics were combined in an integrated assessment of surface and subsurface hydrological contamination at Esgair Mwyn, an abandoned mine in Ceredigion, Wales. Heavy metals discharged from the site are polluting downstream watercourses, leading to widespread Environmental Quality Standards (EQS) compliance failures. Through salt water dilution gauging and water quality sampling, a daily efflux of 876 g of heavy metals was calculated, with contaminant mobilisation occurring mainly in two primary surface streams draining an exposed tailings heap. Electrical resistivity tomography subsurface imaging found a seepage plane within the tailings lagoon wall, whilst the main tailings heap became increasingly saturated with depth. A large adjacent field also had a high potential to convey pollutants in solution, yet its morphological characteristics have limited transmission, as the area acts as a passive treatment type system. With remediation of already polluted water both difficult and expensive, this approach provides a cost-effective way to identify the origins and pathways of contaminants, informing mitigation strategies focussed on containment. Esgair Mwyn is not an isolated case, as abandoned metal mines release at least 860 t of heavy metals annually into UK water bodies. These techniques could reduce or prevent abandoned metal mine hydrological pollution for decades to come, and enable associated UK water bodies to comply with future water quality standards.
Show more [+] Less [-]Characterizing Abandoned Mining Dams by Geophysical (ERI) and Geochemical Methods: The Linares-La Carolina District (Southern Spain)
2012
Martínez, J. | Rey, J. | Hidalgo, M. C. | Benavente, J.
The mining exploitation of metallic sulphides, together with the activities associated to the mineral treatment and smelting, when maintained through centuries due to the wealth of the ores, generate important accumulations of wastes in structures of different kind of tailing dams and ponds, for instance. When no previous corrective steps are taken, as usually happens in old exploitations, this means a serious risk of environmental pollution, due to the mobilisation of heavy metals. The present study has been carried out in a mining district, actively exploited during the last two millennia, that was the first world’s producer of lead during some periods (Linares-La Carolina, southern Spain). In this district, the mining activity was associated to a philonian network of metallic sulphurs and ended by the 1980s of the past century. The ancient mining operations, mostly subterranean, have generated large accumulations of residues without any prior corrective action. Therefore, this work intends to characterise these mining dams and determine the influence of these mining wastes on the quality of surface and ground waters. With this goal, three structures that store the mining refuse of different mineralogical origin have been selected. First, a geochemical characterisation of the soil was performed in the area surrounding each of the structures. In all cases, high levels of trace elements (including Pb, Zn, Cu, Cd, Mn, As, Sb and Ba) were observed. A hydrochemical study revealed the mobilisation through the aqueous medium of certain contaminants from the leachate of these ancient accumulations; these contaminants will flow to the streams that drain the area or to the aquifers of the sector. The internal characterisation of these structures was performed with geophysical techniques, specifically electrical resistivity imaging (ERI). The six generated resistivity models have allowed the identification of the morphology of the structures, variations in the vertical and horizontal distribution of the deposited material, fracture zones, water content and reload–unload zones and the contact of the mining wastes with the substrate. Thus, the ERI study confirms the lack of impermeabilisation measures for the terrain in the spill zones in all three cases, which indicates a high risk of contamination of the soil and waters. The obtained images also permit the identification of the ideal positions to conduct future borehole controls.
Show more [+] Less [-]Environmental Monitoring Using Electrical Resistivity Tomography (ERT) in the Subsoil of Three Former Petrol Stations in SE of Spain
2012
Rosales, Rosa Ma | Martínez-Pagan, Pedro | Faz, Angel | Moreno-Cornejo, Jennifer
Electrical resistivity tomography (2D ERT) is a powerful tool for the diagnosis of the subsoil state and to pursue an environmental monitoring in time to detect and follow a temporal evolution of plumes in hydrocarbon-contaminated soils. In situ, 2D ERT was conducted to investigate the electrical properties of the subsoil in three petrol stations in Murcia semiarid Region (SE Spain), which have been active for many years, in order to look for anomalous areas that could be related to the presence of a non-aqueous phase liquid (NAPL) contaminant plume in the subsoil. A total of 18 ERT profiles in wet and dry season were conducted to study the seasonal effects in the resistivity values of the subsoil. Dipole–dipole array was set up to make the soil diagnosis, achieving a good vertical and lateral resistivity distributions for the sites investigated. Interpretations obtained from ERT pseudo-sections, after a processing and inversion data process with PROSYS II and RES2DINV software, show delimited highly resistive regions above 2,000 Ω·m at 2 m deep related to the underground storage tanks (USTs) position and the filling ports and anomalous resistivity areas where boreholes and further GC–FID determination in soil samples have been done. No significant differences have been found between results obtained in dry and wet seasons. Thus, the geo-electrical non-destructive technique ERT is presented as a tool to delineate the USTs positions and to point out anomaly in the subsoil that could contain NAPL, helping to design sampling strategies, saving cost and time.
Show more [+] Less [-]