Refine search
Results 1-10 of 63
Use of nondestructive biomarkers and residue analysis to assess the health status of endangered species of pinnipeds in the south-west Atlantic.
1997
Fossi M.C. | Marsili L. | Junin M. | Castello H. | Lorenzani J.A. | Casini S. | Savelli C. | Leonzio C.
Global PBDE contamination in cetaceans. A critical review
2022
Bartalini, Alice | Muñoz-Arnanz, Juan | García-Álvarez, Natalia | Fernández, Antonio | Jiménez, Begoña
This review summarizes the most relevant information on PBDEs’ occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
Show more [+] Less [-]Effects of artificial light at night on the foraging behavior of an endangered nocturnal mammal
2020
Shier, Debra M. | Bird, Alicia K. | Wang, Thea B.
Modification of nighttime light levels by artificial illumination (artificial light at night; ALAN) is a rapidly increasing form of human disturbance that affects natural environments worldwide. Light in natural environments influences a variety of physiological and ecological processes directly and indirectly and, as a result, the effects of light pollution on species, communities and ecosystems are emerging as significant. Small prey species may be particularly susceptible to ALAN as it makes them more conspicuous and thus more vulnerable to predation by visually oriented predators. Understanding the effects of disturbance like ALAN is especially important for threatened or endangered species as impacts have the potential to impede recovery, but due to low population numbers inherent to at-risk species, disturbance is rarely studied. The endangered Stephens’ kangaroo rat (SKR), Dipodomys stephensi, is a nocturnal rodent threatened by habitat destruction from urban expansion. The degree to which ALAN impacts their recovery is unknown. In this study, we examined the effects of ALAN on SKR foraging decisions across a gradient of light intensity for two types of ALAN, flood and bug lights (756 vs 300 lumen, respectfully) during full and new moon conditions. We found that ALAN decreased probability of resource patch depletion compared to controls. Moreover, lunar illumination, distance from the light source and light type interacted to alter SKR foraging. Under the new moon, SKR were consistently more likely to deplete patches under control conditions, but there was an increasing probability of patch depletion with distance from the source of artificial light. The full moon dampened SKR foraging activity and the effect of artificial lights. Our study underscores that ALAN reduces habitat suitability, and raises the possibility that ALAN may impede the recovery of at-risk nocturnal rodents.
Show more [+] Less [-]Experimental and numerical study on underwater noise radiation from an underwater tunnel
2020
Song, Xiaodong | Zhang, Xuguang | Xiong, Wen | Guo, Zhiming | Wang, Bao
The hydro-acoustic noise radiating from underwater tunnels during vehicle passage may be harmful to aquatic fauna, and this is a particular concern for endangered species. Therefore, the effects of underwater noise radiation and propagation on aquatic biodiversity must be investigated. In this study, the dynamic response of the sediment and tunnel structure in the Yangtze River in China was explored by conducting a field test, and the associated noise radiation from the tunnel was recorded and investigated. A three-dimensional numerical model was then developed to simulate the vibration of the tunnel-sediment coupling system induced by random traffic-flow models. Next, a modal acoustic transfer vector-based method was used to predict underwater noise radiation by use of a three-dimensional finite-element acoustic model. Finally, the accuracy of the simulated results was verified by comparison with measurements. The results showed that the noise radiation induced by passing vehicles was approximately 14 dB greater than the background noise, with a main frequency range of 12–25 Hz. The random traffic-flow model had obvious influence of the simulated noise level above 20 Hz. Vehicle-induced underwater noise may thus have a direct effect on fish species that can perceive low-frequency sound pressure. The proposed method can be used for further investigation of methods to reduce the effect of underwater noise on aquatic fauna, especially endangered species.
Show more [+] Less [-]Accumulation of pollutants in nestlings of an endangered avian scavenger related to territory urbanization and physiological biomarkers
2019
Ortiz-Santaliestra, Manuel E. | Tauler-Ametller, Helena | Lacorte, Silvia | Hernández-Matías, Antonio | Real, Joan | Mateo, Rafael
We monitor pollutant accumulation and investigate associated changes at the physiological level within the population of an obligate avian scavenger, the Egyptian Vulture (Neophron percnopterus), from Catalonia (NE Spain). This population is expanding its range, presumably because of the use of human waste disposal sites as food resource. We hypothesized that habitat urbanization, presumably associated with feeding from human wastes, could influence the accumulation of persistent organic pollutants and metals. The aim of this study was to explore the relationship between accumulated pollutants and biochemical parameters in nestling blood. We used the proportion of urban surface within an 8 km radius of each nest as a proxy to study the relationship between anthropic influence and pollutant accumulation. Observed blood levels of metals, organochlorine pesticides, polychlorinated biphenyls (PCBs), per- and polyfluoroalkylated substances (PFAS) and polybrominated diphenyl ethers (PBDEs) were relatively low, as expected for nestling individuals due to short-term exposures. CB-180 and PBDEs were associated with variations in blood biochemistry parameters; hexa-BDEs appeared positively associated with activities of the enzymes aspartate aminotransferase and lactate dehydrogenase, whereas CB-180 accumulation was associated with an increased activity of creatine phosphokinase and elevated glutathione levels. Increased CB-180 levels were also related to decreased blood concentrations of calcium, cholesterol, α-tocopherol and lutein. A proportion of urban surfaces as low as 6.56% within a radius of 8 km around the nest appears related to the accumulation of CB-180, the majority of analysed PFAS and of PBDE congeners 99 and 209, and increased urbanization was also associated with decreased plasma levels of α-tocopherol and carotenoids. These associations suggest that changes in blood profiles of vitamins, carotenoids or other analytes, despite related to increased plasma levels of CB-180, would be consequence of exploitation of artificial food sources rather than of a direct effect of the pollutants.
Show more [+] Less [-]PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast
2016
Lavandier, Ricardo | Arêas, Jennifer | Quinete, Natalia | de Moura, Jailson F. | Taniguchi, Satie | Montone, Rosalinda | Siciliano, Salvatore | Moreira, Isabel
In the Northern coast of Rio de Janeiro State is located the major urban centers of the oil and gas industry of Brazil. The intense urbanization in recent decades caused an increase in human use of the coastal areas, which is constantly impacted by agricultural, industrial and wastewater discharges. Franciscana dolphin (Pontoporia blainvillei) is a small cetacean that inhabits coastal regions down to a 30 m depth. This species is considered the most threatened cetacean in the Western South Atlantic Ocean. This study investigated the levels of 52 PCB congeners and 9 PBDE congeners in liver of nine individuals found stranded or accidentally caught between 2011 and 2012 in the Northern coast of Rio de Janeiro. PCB mean levels ranged from 208 to 5543 ng g⁻¹ lw and PBDEs mean concentrations varied between 13.84 and 36.94 ng g⁻¹ lw. Contamination patterns suggest the previous use of Aroclor 1254, 1260 and penta-BDE mixtures in Brazil. While still few studies have assessed the organic contamination in cetaceans from the Southern Hemisphere, including Brazil, the levels found in this study could represent a health risk to these endangered species.
Show more [+] Less [-]Accumulation and maternal transfer of polychlorinated biphenyls in Steller Sea Lions (Eumetopias jubatus) from Prince William Sound and the Bering Sea, Alaska
2011
Wang, Jun | Hülck, Kathrin | Hong, Su-Myeong | Atkinson, Shannon | Li, Qing X.
The western stock of the Steller sea lion (Eumetopias jubatus) in the northern Pacific Ocean has declined by approximately 80% over the past 30 years. This led to the listing of this sea lion population as an endangered species in 1997. Chemical pollution is a one of several contributing causes. In the present study, 145 individual PCBs were determined in tissues of male sea lions from Tatitlek (Prince William Sound) and St. Paul Island (Bering Sea), and placentae from the Aleutian Islands. PCBs 90/101, 118, and 153 were abundant in all the samples. The mean toxic equivalents (TEQ) were 2.6, 4.7 and 7.4pg/g lw in the kidney, liver, and blubber samples, respectively. The mean TEQ in placentae was 8pg/g lw. Total PCBs concentrations (2.6–7.9μg/g lw) in livers of some males were within a range known to cause physiological effects. Further suggesting the possibility of adverse effects on this stock.
Show more [+] Less [-]Collateral damage: Anticoagulant rodenticides pose threats to California condors
2022
Herring, Garth | Eagles-Smith, Collin A. | Wolstenholme, Rachel | Welch, Alacia | West, Chris | Rattner, Barnett A.
Anticoagulant rodenticides (ARs) are widespread environmental contaminants that pose risks to scavenging birds because they routinely occur within their prey and can cause secondary poisoning. However, little is known about AR exposure in one of the rarest avian scavengers in the world, the California condor (Gymnogyps californianus). We assessed AR exposure in California condors and surrogate turkey vultures (Cathartes aura) to gauge potential hazard to a proposed future condor flock by determining how application rate and environmental factors influence exposure. Additionally, we examined whether ARs might be correlated with prolonged blood clotting time and potential mortality in condors. Only second-generation ARs (SGARs) were detected, and exposure was detected in all condor flocks. Liver AR residues were detected in 42% of the condors (27 of 65) and 93% of the turkey vultures (66 of 71). Although concentrations were generally low (<10 ng/g ww), 48% of the California condors and 64% of the turkey vultures exposed to ARs exceeded the 5% probability of exhibiting signs of toxicosis (>20 ng/g ww), and 10% and 13% exceeded the 20% probability of exhibiting signs toxicosis (>80 ng/g ww). There was evidence of prolonged blood clotting time in 16% of the free-flying condors. For condors, there was a relationship between the interaction of AR exposure index (legal use across regions where condors existed) and precipitation, and the probability of detecting ARs in liver. Exposure to ARs may complicate recovery efforts of condor populations within their current range and in the soon to be established northern California experimental population. Continued monitoring of AR exposure using plasma blood clotting assays and residue analysis would allow for an improved understanding of their hazard to condors, particularly if paired with recent movement data that could elucidate exposure sources on the landscape occupied by this endangered species.
Show more [+] Less [-]Spatial trends of trace elements bioaccumulation in the most endangered dolphin from the Southwestern Atlantic Ocean: The franciscana (Pontoporia blainvillei)
2022
Vannuci-Silva, M. | Manhães, B.M.R. | Guari, E.B. | Botta, S. | Colosio, A.C. | Barbosa, L.A. | Bertozzi, C.P. | Azevedo, A.F. | Cunha, H.A. | Bisi, T.L. | Lailson-Brito, J.
Trace elements bioaccumulation patterns can be an important tool to assess differences among cetaceans’ populations. In this work, their use as potential chemical markers to differentiate franciscanas (Pontoporia blainvillei) populations was evaluated. Franciscanas were collected from three states in southeastern Brazil, which comprise three different Franciscana Management Areas (FMAs): Espírito Santo (FMA Ia), southern Rio de Janeiro (FMA IIa), and central São Paulo (FMA IIb). The concentrations of As, Cd, Cu, Fe, Hg, Mn and Zn were determined in the muscle, liver and kidney of the animals. Cadmium was the most valuable chemical marker to differentiate stocks, separating at least FMA IIa from the others. The higher Cd levels in FMA IIa, along with dietary information, indicate that the predominant consumption of cephalopods by this population is the main reason for the differences found. Additionally, environmental characteristics of the areas should also be considered as divergent sources of trace elements. Our findings suggest that non-essential trace elements, such as Cd, can be successful markers to differentiate populations. The Mn concentrations in FMA Ia raised concern and must be carefully monitored, as well as other elements that compose the iron ore tailings that have impacted the Espírito Santo coastal area. Additionally, this is the first study to report trace element concentration in the franciscanas from FMA IIa (southern Rio de Janeiro). Trace element concentrations found in franciscanas may represent different contamination levels in their preys and environments, which might pose specific threats to distinct populations. Therefore, our findings are important to characterize and differentiate franciscana populations and to guide precise management and conservation actions for the distinct stocks of this endangered species.
Show more [+] Less [-]Tissue distribution and health risk of trace elements in East Asian finless porpoises
2021
Tian, Jiashen | Gan, Zhiwei | Sanganyado, Edmond | Lu, Zhichuang | Wu, Jinhao | Han, Jiabo | Liu, Wenhua
We investigated the tissue distribution, trophic transfer, and ecological risk of 13 trace elements in 26 East Asian finless porpoises (Neophocaena asiaeorientalis sunameri), an endangered species found in the Liaodong Bay and the north Yellow Sea. All the investigated trace elements were detected in the tissue and food web of the East Asian finless porpoises. The concentrations of the potentially toxic elements were 2.37 × 10⁻⁵ – 754 mg kg⁻¹ dry weight (dw) in stranded porpoises and 0.01–159 mg kg⁻¹ dw in their food web. Tissue-specific distribution of the trace elements generally ranked as: liver > kidney > heart > lung > muscle. Zn was the dominant contaminant in the five investigated tissues. Significant positive correlations were found between body length or age and some trace elements, especially Cd. Adults (≥2 years old) presented higher concentrations of most of the trace elements than juveniles (<2 years old). Sex-dependent distribution of the trace elements was insignificant except for Mn, Ni, and Zn in muscle and renal tissue. As, Cu, Mn, Ni, Pb, and V biodiluted across the East Asian finless porpoise food web while Zn biomagnified. However, Hg, Cd, Co, Cr, Se, and Sn did not exhibit apparent trophic transfer trends. Overall, ecological risk assessment of trace elements in East Asian finless porpoises suggested that greater attention should be given to Hg, As, Cd, and Se.
Show more [+] Less [-]