Refine search
Results 1-10 of 84
Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil
2020
Cheng, Cheng | Nie, Zong-Wei | He, Lin-Yan | Sheng, Xia-Fang
In this study, an arsenic (As)-resistant facultative endophytic bacterial strain, F2, was isolated from the root of Oryza sativa Longliangyou Huazhan and identified as Serratia liquefaciens according to 16S rRNA gene sequence analysis. Strain F2 was characterized for i) its impacts on As immobilization in solution and rice tissue As accumulation, and ii) the mechanisms involved for different levels of As-pollution in soils. In strain F2-inoculated culture medium, the concentration of As decreased, while the pH, cell growth, and cell-immobilized As significantly increased over time. Grain As content reduced by between 23 and 36% in strain F2-inoculated rice plants in comparison to the control. Available As content decreased by between 28 and 52%, but unavailable As content increased by between 27 and 46% in the strain F2-inoculated soil when compared with the controls. Moreover, the strain decreased the As translocation factor by between 34 and 46%, but increased the As concentration by between 24 and 70% in Fe plaque on the rice root surfaces in comparison to the controls. These results suggested that strain F2 decreased the rice grain As uptake by i) decreasing available As in soil, ii) increasing rice root surface As adsorption, and iii) decreasing As translocation from the roots to grains. Our findings may provide a new rice-derived facultative endophytic bacteria-assisted approach for decreasing the As uptake to rice grains in As-polluted soils.
Show more [+] Less [-]Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents
2020
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qₘₐₓ) of 21.6 mg g⁻¹. However, the COD of the filtrate increased from 0 to 292 mg L⁻¹ during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L⁻¹. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Show more [+] Less [-]Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment
2018
Ye, Mao | Sun, Mingming | Zhao, Yuanchao | Jiao, Wentao | Xia, Bing | Liu, Manqiang | Feng, Yanfang | Zhang, Zhongyun | Huang, Dan | Huang, Rong | Wan, Jinzhong | Du, Ruijun | Jiang, Xin | Hu, Feng
High abundances of antibiotic-resistant pathogenic bacteria (ARPB) and antibiotic resistance genes (ARGs) in agricultural soil-plant systems have become serious threats to human health and environmental safety. Therefore, it is crucial to develop targeted technology to control existing antibiotic resistance (AR) contamination and potential dissemination in soil-plant systems. In this work, polyvalent bacteriophage (phage) therapy and biochar amendment were applied separately and in combination to stimulate ARPB/ARG dissipation in a soil-lettuce system. With combined application of biochar and polyvalent phage, the abundance of Escherichia coli K-12 (tetR) and Pseudomonas aeruginosa PAO1 (ampR + fosR) and their corresponding ARGs (tetM, tetQ, tetW, ampC, and fosA) significantly decreased in the soil after 63 days' incubation (p < 0.05). Similar results for endophytic K-12 and PAO1, and ARGs, were also obtained in lettuce tissues following combined treatment. Additionally, high throughput sequencing revealed that biochar and polyvalent phage synergetically improved the structural diversity and functional stability of the indigenous bacterial communities in soil and the endophytic ones in lettuce. Hence, this work proposes a novel biotechnology that combines biochar amendment and polyvalent phage therapy to achieve targeted inactivation of ARPB, which stimulates ARG dissipation in soil-lettuce systems.
Show more [+] Less [-]The retention and distribution of parent, alkylated, and N/O/S-containing polycyclic aromatic hydrocarbons on the epidermal tissue of mangrove seedlings
2017
Li, Ruilong | Tan, Huadong | Zhu, Yaxian | Zhang, Yong
The polycyclic aromatic hydrocarbons (PAHs) located on the epidermal tissues showed distinctive toxic effects to root, while the retention and distribution of PAHs on mangrove seedlings poorly understood. Our results confirmed that the partition coefficients (Kf) of the PAHs retained on the epidermal tissue of mangrove roots, such as Kandelia obovata, Avicennia marina and Aegiceras corniculatum, were much higher than the Poaceae plants roots, for example wheat and maize (Wild et al., 2005). Moreover, to the parent and alkyl PAHs, a well negative correlation was observed between the surface polarity of these three species of mangrove root and the Kf values (p < 0.05). To the N/O/S containing PAHs, these relationships were not obviously due to existing of the π-π, n-π interactions and hydrogen bonding between the N/O/S-containing PAHs and epidermal tissues. The PAHs retained on these three species of mangrove root epidermal tissues formed larger clusters than that of on Poaceae plants, such as wheat and maize (Wild et al., 2005) due to the limitation of the suberization of the root exodermis and endodermis. After exposure of 30 d, rhizo- and endophytic bacteria degraded parts of the N/O/S-containing PAHs to medium-lifetime fluorescence substances. To our knowledge, this is the first time to assess the retention of PAHs on the epidermal tissue of mangrove root, which will improve our understanding of the root uptake PAHs process.
Show more [+] Less [-]Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content
2013
Becerra-Castro, Cristina | Kidd, Petra S. | Rodríguez-Garrido, Beatriz | Monterroso, Carmela | Santos-Ucha, Paula | Prieto-Fernández, Ángeles
The performance of Cytisus striatus in association with different microbial inoculant treatments on the dissipation of the insecticide hexachlorocyclohexane (HCH) was studied. Two soils with different organic matter (A and B soil) content were spiked with 0 or 65 mg HCH kg−1. Plants were either not inoculated (NI), or inoculated with the endophyte Rhodococcus erythropolis ET54b and the HCH-degrader Sphingomonas sp. D4 separately or in combination (ET, D4 and ETD4). Unplanted pots were also established. HCH phytotoxicity was more pronounced in the B soil. Soil HCH concentrations in unplanted pots were similar to initial concentrations, whereas concentrations were reduced after plant growth: by 20% and 8% in A and B soil, respectively. Microbial inoculants also modified HCH dissipation, although effects were soil-dependent. Inoculation with the combination of strains (ETD4) led to a significant enhancement in HCH dissipation: up to 53% in the A soil and 43% in the B soil.
Show more [+] Less [-]Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees
2010
Olbrich, Maren | Knappe, Claudia | Wenig, Marion | Gerstner, Elke | Häberle, Karl-Heinz | Kitao, Mitsutoshi | Matyssek, Rainer | Stich, Susanne | Leuchner, Michael | Werner, Herbert | Schlink, Katja | Müller-Starck, G (Gerhard) | Welzl, Gerhard | Scherb, Hagen | Ernst, Dieter | Heller, Werner
In 2006, a controlled infection study was performed in the ‘Kranzberger Forst’ to address the following questions: (1) Will massive artificial inoculation with Apiognomonia errabunda override the previously observed inhibitory effect of chronic ozone? (2) Can biochemical or molecular markers be detected to account for the action of ozone? To this end six adult beech trees were chosen, three ozone fumigated (2× ozone) and three control trees (ambient = 1× ozone). Spore-sprayed branches of sun and shade crown positions of each of the trees, and uninoculated control branches, were enclosed in 100-L plastic bags for one night to facilitate infection initiation. Samples were taken within a five-week period after inoculation. A. errabunda infestation levels quantified by real-time PCR increased in leaves that were not fumigated with additional ozone. Cell wall components and ACC (ethylene precursor 1-amino cyclopropane-1-carboxylic acid) increased upon ozone fumigation and may in part lead to the repression of fungal infection. Chronic sublethal ozone exposure reduces both natural and artificial infestation of beech leaves by the endophytic fungus Apiognomonia errabunda.
Show more [+] Less [-]Transformation of arsenic species by diverse endophytic bacteria of rice roots
2022
Chen, Chuan | Yang, Baoyun | Gao, Axiang | Yu, Yu | Zhao, Fang-Jie
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.
Show more [+] Less [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Show more [+] Less [-]Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, “AI001, and AI002” mediate cadmium translocation and phytoremediation
2022
Ullah, Ihsan | Mateen, Aisha | Ahmad, Mian Afaq | Munir, Iqbal | Iqbal, Aqib | Alghamdi, Khalid M.S. | Al-Solami, Habeeb M. | Siddiqui, Muhammad Faisal
Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0–30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5–25 mg/L of Cd. Expression of Cd response genes was quantified through qRT–PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27–30 μg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., “HMA2, HMA3, and HMA4” and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.
Show more [+] Less [-]The endophytic bacterium relieved healthy risk of pakchoi intercropped with hyperaccumulator in the cadmium polluted greenhouse vegetable field
2020
Ma, Luyao | Wu, Yingjie | Wang, Qiong | Feng, Ying
Planting leafy vegetables, especially pakchoi, in cadmium (Cd) polluted farmland is easy to lead to excessive Cd content in edible parts, which results in high risk of food chain. In this study, a field experiment was carried out to study the effects of intercropping of pakchoi with Cd hyperaccumulator Sedum alfredii Hance, and the roles of endophytic bacterium SaMR12 was also investigated. When intercropping with Sedum, the growth of pakchoi was not affected but their Cd concentration and accumulation were significantly increased, while which were obviously decreased by SaMR12 inoculation. After intercropping, the biomass of Sedum was significantly reduced, but their Cd concentration increased. SaMR12 inoculation significantly increased Cd accumulation of Sedum, and which increased to 3 times in Sedum monoculture. Those results showed that although intercropping with hyperaccumulator could lead to higher risk of pakchoi in Cd polluted field, intercropping with SaMR12 inoculated Sedum can decrease Cd concentration of pakchoi and promote Cd absorption of Sedum, which indicated that this endophyte can be made into a microbial inoculum as a soil additive for the safe production of vegetables and the soil Cd pollution remediation.
Show more [+] Less [-]